scholarly journals In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch Salmonella susceptibility

2014 ◽  
Vol 93 (4) ◽  
pp. 818-829 ◽  
Author(s):  
J.E. de Oliveira ◽  
E. van der Hoeven-Hangoor ◽  
I.B. van de Linde ◽  
R.C. Montijn ◽  
J.M.B.M. van der Vossen
Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 629
Author(s):  
Walaa A. Husseiny ◽  
Abeer A. I. Hassanin ◽  
Adel A. S. El Nabtiti ◽  
Karim Khalil ◽  
Ahmed Elaswad

The present study was conducted to investigate the effects of colloidal nanoparticles of silver (Nano-Ag) on the expression of myogenesis-related genes in chicken embryos. The investigated genes included the members of the myogenic regulatory factors family (MRFs) and myocyte enhancer factor 2A (MEF2A) genes. A total of 200 fertilized broiler eggs (Indian River) were randomly distributed into four groups; non-injected control, injected control with placebo, treatment I in ovo injected with 20 ppm Nano-Ag, and treatment II in ovo injected with 40 ppm Nano-Ag. The eggs were then incubated for 21 days at the optimum temperature and humidity conditions. Breast muscle tissues were collected at the 5th, 8th, and 18th days of the incubation period. The mRNA expression of myogenic determination factor 1 (MYOD1), myogenic factor 5 (MYF5), myogenic factor 6 (MYF6), myogenin (MYOG), and MEF2A was measured at the three sampling points using real-time quantitative PCR, while MYOD1 protein expression was evaluated on day 18 using western blot. Breast muscle tissues were histologically examined on day 18 to detect the changes at the cellular level. Our results indicate that myogenesis was enhanced with the low concentration (20 ppm) of Nano-Ag due to the higher expression of MYOD1, MYF5, and MYF6 at the transcriptional level and MYOD1 at the translational level. Moreover, histological analysis revealed the presence of hyperplasia (31.4% more muscle fibers) in treatment I (injected with 20 ppm). Our findings indicate that in ovo injection of 20 ppm Nano-Ag enhances the development of muscles in chicken embryos compared with the 40-ppm dosage and provide crucial information for the use of silver nanoparticles in poultry production.


2018 ◽  
Vol 97 (2) ◽  
pp. 658-666 ◽  
Author(s):  
M.D. Triplett ◽  
W. Zhai ◽  
E.D. Peebles ◽  
C.D. McDaniel ◽  
A.S. Kiess
Keyword(s):  

Development ◽  
1994 ◽  
Vol 120 (5) ◽  
pp. 1315-1323 ◽  
Author(s):  
K. Sharma ◽  
Z. Korade ◽  
E. Frank

Development of sensory projections was studied in cultured spinal segments with attached dorsal root ganglia. In spinal segments from stage 30 (E6.5) and older chicken embryos, prelabeled muscle and cutaneous afferents established appropriate projections. Cutaneous afferents terminated solely within the dorsolateral laminae, whereas some muscle afferents (presumably Ia afferents) projected ventrally towards motoneurons. Development of appropriate projections suggests that sufficient cues are preserved in spinal segments to support the formation of modality-specific sensory projections. Further, because these projections developed in the absence of muscle or skin, these results show that the continued presence of peripheral targets is not required for the formation of specific central projections after stage 29 (E6.0). Development of the dorsal horn in cultured spinal segments was assessed using the dorsal midline as a marker. In ovo, this midline structure appears at stage 29. Lack of midline formation in stage 28 and 29 cultured spinal segments suggests that the development of the dorsal horn is arrested in this preparation. This is consistent with earlier reports suggesting that dorsal horn development may be dependent on factors outside the spinal cord. Because dorsal horn development is blocked in cultured spinal segments, this preparation makes it possible to study the consequences of premature ingrowth of sensory axons into the spinal cord. In chicken embryos sensory afferents reach the spinal cord at stage 25 (E4.5) but do not arborize within the gray matter until stage 30. During this period dorsal horn cells are still being generated. In spinal segments, only those segments that have developed a midline at the time of culture support the formation of midline at the time of culture support the formation of specific sensory projections.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 84 (5) ◽  
pp. 764-770 ◽  
Author(s):  
Z. Uni ◽  
P.R. Ferket ◽  
E. Tako ◽  
O. Kedar

2020 ◽  
Vol 27 (14) ◽  
pp. 16865-16875 ◽  
Author(s):  
Mohamed Ahmed Fathi ◽  
Guofeng Han ◽  
Ruifen Kang ◽  
Dan Shen ◽  
Jiakun Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document