scholarly journals Vehicle Dynamics Model With Non Linear Bush Model and Tire Filter for Ride Comfort Analysis

Author(s):  
Jaehun Jo ◽  
Daeoh Kang ◽  
Gwangwoo Lee ◽  
Seungjin Heo
2020 ◽  
Vol 28 (12) ◽  
pp. 859-864
Author(s):  
Jae-hun Jo ◽  
Won-yul Kang ◽  
Dae-oh Kang ◽  
Gwang-woo Lee ◽  
Seung-Jin Heo

2014 ◽  
Vol 624 ◽  
pp. 289-292
Author(s):  
Ting Jin ◽  
Yun Qiu Gong ◽  
Chun Yu Wei

The six degrees of freedom platform in vehicle driving simiulator simulates vehicle motion based on the calculation results of the dynamics model, so good dynamics model is the basis and prerequisite of simulator’s good performance. This paper describes the process of applying the Vortex software to establish vehicle dynamics model and focuses on the problem of damping matching in the vehicle suspension system based on the ride comfort and stability.


2021 ◽  
Vol 11 (10) ◽  
pp. 4687
Author(s):  
Philipp Maximilian Sieberg ◽  
Dieter Schramm

Considering automated driving, vehicle dynamics control systems are also a crucial aspect. Vehicle dynamics control systems serve as an important influence factor on safety and ride comfort. By reducing the driver’s responsibility through partially or fully automated driving functions, the occupants’ perception of safety and ride comfort changes. Both aspects are focused even more and have to be enhanced. In general, research on vehicle dynamics control systems is a field that has already been well researched. With regard to the mentioned aspects, however, a central control structure features sufficient potential by exploiting synergies. Furthermore, a predictive mode of operation can contribute to achieve these objectives, since the vehicle can act in a predictive manner instead of merely reacting. Consequently, this contribution presents a central predictive control system by means of a non-linear model-based predictive control algorithm. In this context, roll, self-steering and pitch behavior are considered as control objectives. The active roll stabilization demonstrates an excellent control quality with a root mean squared error of 7.6953×10−3 rad averaged over both validation maneuvers. Compared to a vehicle utilizing a conventional control approach combined with a skyhook damping, pitching movements are reduced by 19.75%. Furthermore, an understeering behavior is maintained, which corresponds to the self-steering behavior of the passive vehicle. In general, the central predictive control, thus, increases both ride comfort and safety in a holistic way.


2019 ◽  
Vol 27 (10) ◽  
pp. 803-809
Author(s):  
ChulHyung Lee ◽  
MyeongJae Han ◽  
TaeWon Park ◽  
SukJin Lee ◽  
JeongSik Park

Author(s):  
Abbas Soltani ◽  
Ahmad Bagheri ◽  
Shahram Azadi

This article presents an integrated control of yaw, roll and vertical dynamics based on a semi-active suspension and an electronic stability control with active differential braking system. During extreme manoeuvres, the probability of vehicle rollover is increased and the stability of lateral and yaw vehicle motions is deteriorated because of the saturation of tyre forces. Furthermore, when the road excitation frequencies are equal to the natural frequencies of the unsprung masses, the resonance phenomena occurs, which causes some oscillations getting revealed on responses of the yaw and lateral vehicle dynamics. In these situations, the active braking alone cannot be helpful to improve the vehicle handling and stability, considerably. In order to overcome these difficulties, a coordinated control of the semi-active suspension and the active braking is proposed, using a fuzzy controller and an adaptive sliding mode controller, respectively. A non-linear full vehicle model with 14 degrees of freedom is established and combined with the modified Pacejka tyre model. As the majority of vehicle dynamics variables and the road profile inputs cannot be measured in a cost-efficient way, a non-linear estimator based on unscented Kalman filter is designed to estimate the entire vehicle dynamics states and the road unevenness. Simulation results of the steering manoeuvres on the random road inputs show that the proposed chassis system can effectively improve the vehicle handling, stability and ride comfort.


2013 ◽  
Vol 765-767 ◽  
pp. 382-386
Author(s):  
Jian Kun Peng ◽  
Hong Wen He ◽  
Bing Lu

A 7-DOFs vehicle dynamics model which includes active suspension system (ASS) is established, and a LQR controller for active suspension system was designed based on optimal control theory. The simulation models for active suspension system and passive suspension system were built, and a simulation experiment was carried out with MATLAB/Simulink Software. The simulation results show that the optimal control of active suspension system can reduce vertical, roll and pitch accelerations of sprung mass, and the vehicle ride comfort and handling stability were improved effectively.


Author(s):  
Prashanth KR Vaddi ◽  
Cheruvu S Kumar

A non-linear full vehicle model for simulation of vehicle ride and handling performance is proposed. The model effectively estimates the suspension spring compressions, thus improving the accuracy of normal force calculations. This is achieved by developing models for suspension kinematics, which are then integrated with the commonly used 14 degrees of freedom vehicle dynamics models. This integrated model effectively estimates parameters like camber angles, toe angles and jacking forces, which are capable of significantly affecting the handling performance of the vehicle. The improvements in the accuracy of spring compressions help in simulating the effects of non-linear suspension elements, and the accuracy of handling simulation is enhanced by the improvements in normal force estimates. The model developed in Simulink is validated by comparing the results to that from ADAMS car.


Sign in / Sign up

Export Citation Format

Share Document