A non-linear vehicle dynamics model for accurate representation of suspension kinematics

Author(s):  
Prashanth KR Vaddi ◽  
Cheruvu S Kumar

A non-linear full vehicle model for simulation of vehicle ride and handling performance is proposed. The model effectively estimates the suspension spring compressions, thus improving the accuracy of normal force calculations. This is achieved by developing models for suspension kinematics, which are then integrated with the commonly used 14 degrees of freedom vehicle dynamics models. This integrated model effectively estimates parameters like camber angles, toe angles and jacking forces, which are capable of significantly affecting the handling performance of the vehicle. The improvements in the accuracy of spring compressions help in simulating the effects of non-linear suspension elements, and the accuracy of handling simulation is enhanced by the improvements in normal force estimates. The model developed in Simulink is validated by comparing the results to that from ADAMS car.

Author(s):  
F Chang ◽  
Z-H Lu

It is worthwhile to design a more accurate dynamic model for air springs, to investigate the dynamic behaviour of an air spring suspension, and to analyse and guide the design of vehicles with air spring suspensions. In this study, a dynamic model of air spring was established, considering the heat transfer process of the air springs. Two different types of air spring were tested, and the experimental results verified the effectiveness of the air spring model compared with the traditional model. The key factors affecting the computation accuracy were studied and checked by comparing the results of the experiments and simulations. The new dynamic model of the air spring was integrated into the full-vehicle multi-body dynamics model, in order to investigate the air suspension behaviour and vehicle dynamics characteristics. The co-simulation method using ADAMS and MATLAB/Simulink was applied to integration of the air spring model with the full-vehicle multi-body dynamics model.


Author(s):  
S. C¸ag˘lar Bas¸lamıs¸lı ◽  
Selim Solmaz

In this paper, a control oriented rational tire model is developed and incorporated in a two-track vehicle dynamics model for the prospective design of vehicle dynamics controllers. The tire model proposed in this paper is an enhancement over previous rational models which have taken into account only the peaking and saturation behavior disregarding all other force generation characteristics. Simulation results have been conducted to compare the dynamics of a vehicle model equipped with a Magic Formula tire model, a rational tire model available in the literature and the present rational tire model. It has been observed that the proposed tire model results in vehicle responses that closely follow those obtained with the Magic Formula even for extreme driving scenarios conducted on roads with low adhesion coefficient.


2006 ◽  
Vol 17 (05) ◽  
pp. 733-747
Author(s):  
T. JANSE VAN RENSBURG ◽  
M. A. VAN WYK ◽  
W.-H. STEEB

A driving simulator gives a driver the impression that he is driving a real vehicle. This is done by simulating a realistic terrain and background scenario, as well as the windows, mirrors, sound, motion and vehicle dynamics of a real vehicle. A vehicle dynamics model uses the driver input such as accelerator, brake and steering position as well as terrain input to determine the position, orientation and velocity of the vehicle. Proper testing is necessary to ensure that the vehicle dynamics model represents the dynamics of a real vehicle. This implies more than only verifying standard vehicle dynamics equations. Integration and other numerical methods used may also influence the end result. Detail about the vehicle dynamics model used is not always available when developed by another institution. This article describes a "black box" testing method for verification of the vehicle dynamics model. This testing scenario has not yet been discussed within the literature.


Author(s):  
Zheng-Dong Ma ◽  
N. C. Perkins

Abstract This paper extends the methods and results of a previous paper (Ma and Perkins, 1999) on simulating track-wheel-terrain interaction for tracked vehicle dynamics. A new solution algorithm is described that includes an adaptive finite element method for remeshing the track model during simulation. Doing so produces a track model that more accurately describes the mechanics of a track as the vehicle negotiates rough terrain. The model and solution algorithm are illustrated using a full vehicle model of an M1A1 tank.


Author(s):  
Long Wu ◽  
Lei Zuo

In vehicle dynamics researchers traditionally investigate the suspension performance based on a quarter car model and then reestablish a comprehensive model for the full car by considering additional degrees of freedom (DOF). Based on the derivation of the coupling ratios between the sprung mass of a full car and four sprung masses of quarter cars, the analysis of a full vehicle dynamics with fourteen DOFs in vertical and lateral directions is possible. The full car model can be expressed by four independent quarter car models. An analysis method will be investigated in order to provide a novel performance estimation for a full vehicle suspension. The case study shows that the vibrations of a full vehicle can be quantitatively obtained based on the test results of quarter suspensions.


2011 ◽  
Vol 141 ◽  
pp. 319-322
Author(s):  
Jun Zhong Xia ◽  
Zong Po Ma ◽  
Shu Min Li ◽  
Xiang Bi An

This paper focuses on the influence of various vehicle suspension systems on ride comfort. A vehicle model with eight degrees of freedom is introduced. With this model, various types of non-linear suspensions such as active and semi-active suspensions are investigated. From this investigation, we draw the conclusion that the active and semi-active suspensions models are beneficial for ride comfort.


2014 ◽  
Vol 624 ◽  
pp. 289-292
Author(s):  
Ting Jin ◽  
Yun Qiu Gong ◽  
Chun Yu Wei

The six degrees of freedom platform in vehicle driving simiulator simulates vehicle motion based on the calculation results of the dynamics model, so good dynamics model is the basis and prerequisite of simulator’s good performance. This paper describes the process of applying the Vortex software to establish vehicle dynamics model and focuses on the problem of damping matching in the vehicle suspension system based on the ride comfort and stability.


2001 ◽  
Author(s):  
Taichi Shiiba ◽  
Yoshihiro Suda

Abstract In this paper, the authors propose to apply the full vehicle model of multibody dynamics to driving simulator with 6 degrees of freedom motion system. By this proposal, the characteristics of driving simulator become very similar to the actual automobiles. It becomes possible to predict the performance of vehicle dynamics and the riding comfort by feeling test without prototyping automobile. To realize real-time calculation that is necessary for driving simulator, the authors proposed approximated real-time analysis method. By this method, real-time vehicle analysis of 2 ms step time of numerical integration is achieved with 91 degrees of freedom vehicle model.


Sign in / Sign up

Export Citation Format

Share Document