STANDARDIZATION OF REQUIREMENTS FOR MATERIALS AND PROCESSES FOR CONSTRUCTION OF ROAD PAVEMENT LAYERS STRENGTHENED BY COMPLEX BINDER

2020 ◽  
Vol 2 (262) ◽  
pp. 35-42
Author(s):  
Tatiana Tereshchenko ◽  
◽  
Serhii Illiash ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1077
Author(s):  
Leonardo Lijuwardi ◽  
Gregorius Sandjaja Sentosa

ABSTRACTMulti-layer systems theory is one of the concepts used in finding out the amount of strain and stress that occurs in the road pavement system due to vehicle loads. The purpose and goal of this study is to analyze the amount of strain that occurs on the pavement systems in Indonesia, especially in the subgrade position. The type of multi-layer system theory used to calculate the amount of strain includes the theory of one layer systems, two-layer systems and three-layer systems with data analyzed in the form of pavement thickness and type of pavement material.Based on this study, the value of strain obtained by the theory of one-layer system in some of the road data reviewed are 533.8658 microstrains, 361.3456 microstrains, 1577.987601 microstrains, 618,012 microstrains and 140.3075 microstrains. For research with two-layers systems, the results obtained are 1116.2920 microstrains, 544.322 microstrains, 1448.0839 microstrains, 734.1844 microstrains and 738.7226 microstrains. For research with three-layers system, results obtained are 72.20275278; 70.80346908; 192.9638366; 123.1150377dan 391.8845636 microstrains. The results with the calculation of one-layer system are very large because the modulus values of the subgrade layers are not reviewed and only pavement thickness is reviewed. As for calculations with the theory of two-layer systems, the results obtained are far greater than one-layer systems, due to the limitations of the graph to find the value of the ratio between thickness and large contact area. Calculation with the theory of three-layers system is a strain calculation which has a much smaller value compared to the theory of one-layer system and two- layer system. This is because this theory divides the calculated pavement layers into three layers, which is in accordance with the flexible pavement system which divides the pavement layers into three layers, so this calculation is the most ideal calculation because it approaches its original condition.ABSTRAKTeori sistem lapis banyak merupakan salah satu konsep yang digunakan dalam mencari tahu besaran regangan dan tegangan yang terjadi pada sistem perkerasan jalan raya akibat beban kendaraan. Maksud dan tujuan dari penelitian ini adalah untuk menganalisis mengenai besaran regangan yang terjadi pada jalan raya di Indonesia pada lapisan tanah dasar khususnya di posisi permukaan tanah dasar. Adapun jenis teori sistem lapis banyak yang digunakan untuk menghitung besaran regangan tersebut antara lain teori one-layer systems, two-layers systems dan three-layers systems dengan data yang dianalisis berupa tebal perkerasan dan jenis material perkerasan jalan.Berdasarkan penelitian ini, adapun nilai dari regangan yang diperoleh dengan teori one-layer system di beberapa data jalan yang ditinjau, antara lain 533.8658 mikrostrain, 361.3456 mikrostrain, 1577.987601 mikrostrain, 618.012 mikrostrain dan 140.3075 mikrostrain. Untuk penelitian dengan two-layers system diperoleh hasil yaitu 1116.2920 mikrostrain, 544.322 mikrostrain, 1448.0839 mikrostrain, 734.1844 mikrostrain dan 738.7226 mikrostrain. Untuk penelitian dengan three-layers system diperoleh hasil antara lain 72.20275278; 70.80346908; 192.9638366; 123.1150377 dan 391.8845636 mikrostrain. Hasil dengan perhitungan one-layer system sangat besar dikarenakan nilai modulus lapisan dari subgrade tidak ditinjau dan hanya meninjau tebal perkerasan. Adapun untuk perhitungan dengan teori two-layers system, hasil yang diperoleh jauh lebih besar daripada one-layer system, yang disebabkan keterbatasan dari grafik untuk mencari nilai perbandingan antara ketebalan dan luas kontak yang besar. Perhitungan dengan teori three-layers system merupakan perhitungan regangan yang memiliki nilai jauh lebih kecil dibandingkan dengan teori one-layer system dan two-layer systems. Hal ini dikarenakan teori ini membagi lapisan perkerasan yang dihitung menjadi tiga buah lapisan, yang sesuai dengan sistem perkerasan lentur yang membagi lapisan perkerasan menjadi tiga buah lapisan, sehingga perhitungan ini merupakan perhitungan yang paling ideal karena mendekati kondisi aslinya.


Pavement icing during short-term night temperature drops leads to deterioration of highway performances and increase in road traffic accidents (RTA) in Krasnodar Krai. Peculiar features of temperature regime in road climatic zone (RCZ) IV are analyzed. The considered climatic zone is characterized by frequent zero crossing temperatures of air and road pavement, sharp short-term temperature drops in nighttime, frequent icing of road pavement. Main factors are highlighted which effect temperature regime of road structures. Mathematical model is presented for prediction of road pavement temperature based on weather forecasts. Possibility to decrease the volume of pavement icing by means of thermophysical properties of pavement layers is analyzed.


2014 ◽  
Vol 1020 ◽  
pp. 31-36
Author(s):  
Hakob Gyulzadyan ◽  
Gevorg Voskanyan ◽  
Vigen Ter-Simonyan

This paper presents results of exploration related to C2 and C6 crushed-stone-and-sand ready mixtures strengthened with limestone powder used in road pavement layers. Limestone powder is an industrial waste, which in Ararat region is in big volumes. The samples were taken composed of different fractions of crushed-stone and two types of sand produced from crushed basalt and crushed gravel, and were tested. The composition of ready mixtures meets the requirements of corresponding standard on grain size. To these mixtures limestone powder was added of the percentage range 0-30% of the mixture mass. The main purposes of experimental exploration were to determine the influence of different percentages of limestone powder on compression strength of crushed-stone-and-sand ready mixtures and optimal content of powder. The change of the influence grade was studied by applying different types of sands. Three cylindrical samples were made for each percentage of limestone powder according to a standard method. Compressive strengths of samples have been determined. It was concluded, that the applying limestone powder in C2 and C6 ready mixtures contributes to the cohesion of stone grains as well as to obtaining high indicators of compaction in road pavement layers. The received results allow to arrive to a conclusion that applying limestone powder according to the optimal range distinctly increases the strength characteristics of crushed-stone-sand ready mixtures which in tur contributes the effective implementation of the compacting process. Especially the influence grade is considerable in C6 ready mixtures containing a large amount of crushed stone, as well as in mixtures using sands with smaller fineness modulus.


2017 ◽  
Vol 2017 (8) ◽  
pp. 25-33
Author(s):  
Dariusz Dobrucki ◽  
Łukasz Skotnicki

In the article a review of sand equivalent evaluation methods of mineral mixtures for unbound road pavement layers was shown. Considering that there are various test methods and different evaluation criterions of these materials suitability, the need to develop unified sand equivalent method for aggregates and unbound mixtures in Poland was pointed. The objective method and limiting values of sand equivalent test were suggested. It was done based on laboratory examinations coupled with California bearing ratio tests.


UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 296
Author(s):  
Mahardi Kamalika Khusna Ali ◽  
Agata Iwan Candra ◽  
Elsa Rizqi Purwanti ◽  
Rikha Wirda Izzati ◽  
Kavindo Yugiswara Hutama ◽  
...  

The use of coarse aggregate with poor quality can cause bumpy roads, cracked roads, potholes, and others. Coarse aggregate wear is an indicator of the aggregate resistance index against friction with other objects. Any aggregate to be used in a pavement mix must meet the wear requirements. Low wear causes the aggregate to be easily crushed when exposed to friction and has an impact on a low level of stability. The purpose of this research is to determine the feasibility of coarse aggregate in Kedak Village, Kediri. One of the feasibility of coarse aggregate is reviewed based on wear with abrasion testing. This research was conducted by using an abrasion test using the Los Angeles TA-700 machine and SNI 2417:2008 as a reference. The specimens were taken at random and met the criteria for passing the number 3/4 sieve and stuck on the 2500 gram sieve number 1/2 and the aggregate that passed the 1/2 sieve was stuck on the 3/8 sieve as much as 2500 grams. The results obtained stated that the average wear of the abrasion test was 26.6%. Based on these results, the aggregate can be said to be feasible because it does not exceed 40% in accordance with the provisions of the 2018 Binamarga General Specifications. So that coarse aggregate from Kedak Village, Kediri can be used for all mixtures of road pavement layers.


2021 ◽  
Vol 274 ◽  
pp. 02003
Author(s):  
Talgat Gabdullin ◽  
Marat Makhmutov

The article reviews the option of how to make the top pavement of asphalt-concrete mixture adhere reliably to the base, which is the underlying cement-concrete coating. The bitumen-latex emulsion is suggested as a binder for the two pavement layers. The research aimed to determine the optimal layer thickness of the bituminous-latex emulsion to be applied and achieve the maximum interlayer adhesion between the top asphalt-concrete pavement and the cement-concrete base. After full-scale experiments, the required layer thickness of the bitumen-latex emulsion was 2 mm. With this layer thickness of the binder, road pavement layers do not delaminate and shear when stressed by the intensive flows of vehicles moving on the roads. The results obtained are important for the road construction industry for suggesting the formulation of bitumen-latex emulsion and finding the most effective layer thickness to be applied. The suggested formulation of a bitumen-latex emulsion is frost-resistant. The article describes the experimental steps for determining the optimal application thickness at a fair length. The maintenance-free life of roads with an asphalt-concrete mixture on a cement-concrete base interlayered with a bitumen-latex emulsion as a binder is assumed to get much longer.


Sign in / Sign up

Export Citation Format

Share Document