scholarly journals Multiclass Recognition of Offline Handwritten Devanagari Characters using CNN

Author(s):  
Mamta Bisht ◽  
Richa Gupta

The handwriting style of every writer consists of variations, skewness and slanting nature and therefore, it is a stimulating task to recognise these handwritten documents. This article presents a study on various methods available in literature for Devanagari handwritten character recognition and performs its implementation using Convolutional neural network (CNN). Available methods are studied on different parameters and a tabular comparison is also presented which concludes superiority of CNN model in character recognition task. The proposed CNN model results in well acceptable accuracy using dropout and stochastic gradient descent (SGD) optimizer.

2021 ◽  
Vol 7 (3) ◽  
pp. 420
Author(s):  
Budi Nugroho ◽  
Eva Yulia Puspaningrum ◽  
M. Syahrul Munir

Penelitian ini berkaitan dengan proses klasifikasi Pneumonia Covid-19 (radang paru-paru atau pneumonia yang disebabkan oleh virus corona SARS-CoV-2) dari citra hasil foto rontgen / x-ray paru-paru dengan menggunakan pendekatan pembelajaran mesin. Klasifikasi dilakukan untuk menentukan apakah kondisi paru-paru seseorang mengalami Pneumonia Covid-19, Pneumonia biasa, atau Normal / Sehat. Untuk menghasilkan kinerja klasifikasi yang lebih baik, proses optimasi seringkali digunakan pada tahap pelatihan data. Banyak teknik yang digunakan untuk melakukan optimasi tersebut, diantaranya adalah algoritma Root-Mean-Square Propagation (RMSprop) dan Stochastic Gradient Descent (SGD). Pada penelitian ini, pengujian dilakukan terhadap kedua metode tersebut untuk mengetahui kinerjanya pada klasifikasi Pneumonia Covid-19. Metode klasifikasi menggunakan Convolutional Neural Network (CNN) yang menerapkan 5 layer konvolusi dengan nilai filter 16, 32, 64, 128, dan 256. Proses pelatihan menggunakan 3.900 citra yang terdiri atas 1.300 citra pneumonia covid-19, 1.300 citra pneumonia, dan 1.300 citra normal. Sedangkan proses validasi menggunakan 450 citra dan proses pengujian mengunakan 225 citra. Berdasarkan uji coba yang telah dilakukan, implementasi algoritma optimasi RMSprop menghasilkan akurasi 87,99%, presisi 0,88, recall 0,86, dan f1 score 0,87. Sedangkan implementasi algoritma optimasi SGD menghasilkan akurasi 66,22%, presisi 0,69, recall 0,64, dan f1 score 0,67. Hasil ini memberikan informasi penting bahwa algoritma optimasi RMSprop menghasilkan kinerja yang jauh lebih baik daripada SGD pada klasifikasi Pneumonia Covid-19.


2019 ◽  
Vol 2 (1) ◽  
pp. 41
Author(s):  
Heri Darmanto

Hasil sensus kehidupan laut pada tahun 2013 di seluruh dunia terdapat lebih dari 23.000 spesies dan masih banyak sekali spesies ikan yang belum diidentifikasi. Otolith merupakan organ yang sangat penting di belakang telinga ikan, karena melalui otolith ini dapat diketahui jenis ikan, pertumbuhan dan lingkungan, serta sejarah kehidupannya,  misalnya, umur, reproduksi, dan migrasi. Dengan semakin  canggihnya komputer dan pengolahan di bidang citra,  diharapkan  kemampuan  mengidentifikasi jenis  ikan  yang dimiliki oleh manusia bisa diadopsi  dan diterapkan pada perangkat komputer. Deep Learning saat ini semakin berkembang memanfaatkan sumber daya perangkat keras yang semakin canggih termasuk penggunaan GPU (Graphical Processing Unit) untuk perhitungan proses komputasi dengan akurasi yang lebih baik dan proses yang lebih cepat. Pada penelitian ini metode yang diusulkan, untuk keperluan klasifikasi ikan menggunakan metode Convolutional Neural Network dengan teknik Transfer Learning dari model Alexnet dan optimasi Momentum Stochastic Gradient Descent. Hasil eksperimen diperoleh akurasi sebesar 95.4% lebih tinggi dibanding metode Discriminant Analysis yang memiliki akurasi sebesar 92%.


2021 ◽  
Vol 11 (15) ◽  
pp. 6845
Author(s):  
Abu Sayeed ◽  
Jungpil Shin ◽  
Md. Al Mehedi Hasan ◽  
Azmain Yakin Srizon ◽  
Md. Mehedi Hasan

As it is the seventh most-spoken language and fifth most-spoken native language in the world, the domain of Bengali handwritten character recognition has fascinated researchers for decades. Although other popular languages i.e., English, Chinese, Hindi, Spanish, etc. have received many contributions in the area of handwritten character recognition, Bengali has not received many noteworthy contributions in this domain because of the complex curvatures and similar writing fashions of Bengali characters. Previously, studies were conducted by using different approaches based on traditional learning, and deep learning. In this research, we proposed a low-cost novel convolutional neural network architecture for the recognition of Bengali characters with only 2.24 to 2.43 million parameters based on the number of output classes. We considered 8 different formations of CMATERdb datasets based on previous studies for the training phase. With experimental analysis, we showed that our proposed system outperformed previous works by a noteworthy margin for all 8 datasets. Moreover, we tested our trained models on other available Bengali characters datasets such as Ekush, BanglaLekha, and NumtaDB datasets. Our proposed architecture achieved 96–99% overall accuracies for these datasets as well. We believe our contributions will be beneficial for developing an automated high-performance recognition tool for Bengali handwritten characters.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2761
Author(s):  
Vaios Ampelakiotis ◽  
Isidoros Perikos ◽  
Ioannis Hatzilygeroudis ◽  
George Tsihrintzis

In this paper, we present a handwritten character recognition (HCR) system that aims to recognize first-order logic handwritten formulas and create editable text files of the recognized formulas. Dense feedforward neural networks (NNs) are utilized, and their performance is examined under various training conditions and methods. More specifically, after three training algorithms (backpropagation, resilient propagation and stochastic gradient descent) had been tested, we created and trained an NN with the stochastic gradient descent algorithm, optimized by the Adam update rule, which was proved to be the best, using a trainset of 16,750 handwritten image samples of 28 × 28 each and a testset of 7947 samples. The final accuracy achieved is 90.13%. The general methodology followed consists of two stages: the image processing and the NN design and training. Finally, an application has been created that implements the methodology and automatically recognizes handwritten logic formulas. An interesting feature of the application is that it allows for creating new, user-oriented training sets and parameter settings, and thus new NN models.


2020 ◽  
Vol 8 (5) ◽  
pp. 1277-1284

Cardiovascular disease is the number one deadly disease in the world. Arrhythmia is one of the types of cardiovascular disease which is hard to detect but by using the routine electrocardiogram (ECG) recording. Due to the variety and the noise of ECG, it is very time consuming to detect it only by experts using bare eyes.Learning from the previous research in order to help the experts, this research develop 11 layers Convolutional Neural Network 2D (CNN 2D) using MITBIH Arrhythmia Dataset. The dataset is firstly preprocessed by using wavelet transform method, then being segmented by R-peak method. The challenge is how to conquer the imbalance and small amount of data but still get the optimal accuracy. This research can be helpful in helping the doctors figure out the type of arrhythmia of the patient. Therefore, this research did the comparison of various optimizers attach in CNN 2D namely, Adabound, Adadelta, Adagrad, Amsbound, Adam and Stochastic Gradient Descent (SGD). The result is Adabound get the highest performance with 91% accuracy and faster 1s training duration than Adam which is approximately 18s per epoch.


Sign in / Sign up

Export Citation Format

Share Document