scholarly journals Can the retina show similar molecular and cellular changes as the brain in an animal model of Alzheimer’s disease?

Author(s):  
Ana Catarina Rodrigues-Neves ◽  
Rafael Carecho ◽  
Filipa Baptista ◽  
Paula Moreira ◽  
António Ambrósio
The Analyst ◽  
2019 ◽  
Vol 144 (23) ◽  
pp. 7049-7056 ◽  
Author(s):  
Emerson A. Fonseca ◽  
Lucas Lafetá ◽  
Renan Cunha ◽  
Hudson Miranda ◽  
João Campos ◽  
...  

We have found different Raman signatures of AB fibrils and in brain tissues from unmixed analysis, providing a detailed image of amyloid plaques in the brain, with the potential to be used as biomarkers.


2018 ◽  
Vol 8 (10) ◽  
pp. 185 ◽  
Author(s):  
Teresa Joy ◽  
Muddanna Rao ◽  
Sampath Madhyastha

Alzheimer’s disease (AD) is characterized by the accumulation of neurofibrillary tangles (NFT), deposition of beta amyloid plaques, and consequent neuronal loss in the brain tissue. Oxidative stress to the neurons is often attributed to AD, but its link to NFT and β-amyloid protein (BAP) still remains unclear. In an animal model of AD, we boosted the oxidative defense by N-Acetyl cysteine (NAC), a precursor of glutathione, a powerful antioxidant and free radical scavenger, to understand the link between oxidative stress and NFT. In mimicking AD, intracerebroventricular (ICV) colchicine, a microtubule disrupting agent also known to cause oxidative stress was administered to the rats. The animal groups consisted of an age-matched control, sham operated, AD, and NAC treated in AD models of rats. Cognitive function was evaluated in a passive avoidance test; neuronal degeneration was quantified using Nissl staining. NFT in the form of abnormal tau expression in different regions of the brain were evaluated through immunohistochemistry using rabbit anti-tau antibody. ICV has resulted in significant cognitive and neuronal loss in medial prefrontal cortex (MFC) and all the regions of the hippocampus. It has also resulted in increased accumulation of intraneuronal tau in the hippocampus and MFC. NAC treatment in AD model rats has reversed the cognitive loss and neuronal degeneration. The intraneuronal tau expression also minimized with NAC treatment in AD model rats. Thus, our findings suggest that an antioxidant supplement during the progression of AD is likely to prevent neuronal degeneration by minimizing the neurofibrillary degeneration in the form of tau accumulation.


PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Natalia V. Bobkova ◽  
Vadim V. Novikov ◽  
Natalia I. Medvinskaya ◽  
Irina Yu. Aleksandrova ◽  
Eugenii E. Fesenko

2013 ◽  
Vol 10 (3) ◽  
pp. 252-260 ◽  
Author(s):  
Jae K Ryu ◽  
Jonathan P Little ◽  
Andis Klegeris ◽  
Nattinee Jantaratnotai ◽  
James G McLarnon

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 823
Author(s):  
Ekaterina A. Rudnitskaya ◽  
Tatiana A. Kozlova ◽  
Alena O. Burnyasheva ◽  
Natalia A. Stefanova ◽  
Nataliya G. Kolosova

Sporadic Alzheimer’s disease (AD) is a severe disorder of unknown etiology with no definite time frame of onset. Recent studies suggest that middle age is a critical period for the relevant pathological processes of AD. Nonetheless, sufficient data have accumulated supporting the hypothesis of “neurodevelopmental origin of neurodegenerative disorders”: prerequisites for neurodegeneration may occur during early brain development. Therefore, we investigated the development of the most AD-affected brain structures (hippocampus and prefrontal cortex) using an immunohistochemical approach in senescence-accelerated OXYS rats, which are considered a suitable model of the most common—sporadic—type of AD. We noticed an additional peak of neurogenesis, which coincides in time with the peak of apoptosis in the hippocampus of OXYS rats on postnatal day three. Besides, we showed signs of delayed migration of neurons to the prefrontal cortex as well as disturbances in astrocytic and microglial support of the hippocampus and prefrontal cortex during the first postnatal week. Altogether, our results point to dysmaturation during early development of the brain—especially insufficient glial support—as a possible “first hit” leading to neurodegenerative processes and AD pathology manifestation later in life.


Sign in / Sign up

Export Citation Format

Share Document