scholarly journals The role of the superior temporal cortex in the brain network of attention. A normalized perfusion MRI study in patients with visual extinction and basal ganglia strokes

Author(s):  
Ticini Luca
2010 ◽  
Vol 22 (9) ◽  
pp. 2141-2150 ◽  
Author(s):  
Luca Francesco Ticini ◽  
Bianca de Haan ◽  
Uwe Klose ◽  
Thomas Nägele ◽  
Hans-Otto Karnath

Visual extinction is an intriguing defect of awareness in stroke patients, referring to the unsuccessful perception of contralesional events under conditions of competition. Previous studies have investigated the cortical and subcortical brain structures that, when damaged or inactivated, provoke visual extinction. The present experiment asked how lesions of subcortical structures may contribute to the appearance of visual extinction. We investigated whether lesions centering on right basal ganglia may induce dysfunction in distant, structurally intact cortical structures. Normalized perfusion-weighted MRI was used to identify structurally intact but abnormally perfused brain tissue, that is, zones that are receiving enough blood supply to remain structurally intact but not enough to function normally. We compared patients with right basal ganglia lesions showing versus not showing visual extinction. In the extinction patients, the contrast revealed cortical malperfusion that clustered around the right TPJ. It seems as if malfunction of this area is a critical aspect in visual extinction not only after cortical lesion but also in the case of subcortical basal ganglia damage. Our results support the idea that a normally functioning TPJ area plays a decisive role for the attentional network involved in detecting of visual stimuli under conditions of competition.


2018 ◽  
Author(s):  
Beau Sievers ◽  
Carolyn Parkinson ◽  
Peter J. Kohler ◽  
James Hughes ◽  
Sergey V. Fogelson ◽  
...  

AbstractEmotional music and movement are human universals. Further, music and movement are subjectively linked: it is hard to imagine one without the other. One possible reason for the fundamental link between music and movement is that they are represented the same way in the brain, using a shared neural code. To test this, we created emotional music and animation stimuli that were precisely matched on all time-varying structural features. Participants viewed these stimuli while undergoing fMRI of the brain. Using representational similarity analysis (Kriegeskorte & Kievit, 2013), we show that a single model of stimulus features and emotion content fit activity in both auditory and visual brain areas, providing evidence that these regions share a neural code. Further, this code was used in posterior superior temporal cortex during both audition and vision. Across all regions, the shared code represented both prototypical and mixed emotions (e.g., Happy–Sad). Finally, exploratory analysis revealed that stimulus features and emotion content were represented in early visual areas even when stimuli were presented auditorily. This evidence for a shared neural code is consistent with an adaptive signaling account of emotion perception, where perceivers specifically adapted to perceive cross-sensory redundancy accrue an evolutionary advantage.


Author(s):  
Susanne E. Ahmari

Work in animal models has great potential to shed light on the neural circuit perturbations that lead to OCD-related behaviors. Circuit-specific manipulations allow testing of the causal role of the brain network abnormalities observed in clinical imaging studies, with a precision that is not possible in investigations in humans. In recent years, circuit-specific manipulations in animals using a range of technologies have confirmed that abnormalities in the cortico-striatal circuitry can produce repetitive behaviors, such as excessive grooming. This chapter summarizes these advances. Refining our understanding of the contribution of particular neural circuits to OCD-relevant behaviors can inform the development of anatomically targeted treatments, such as deep brain stimulation.


SLEEP ◽  
2020 ◽  
Author(s):  
Kun-Hsien Chou ◽  
Pei-Lin Lee ◽  
Chih-Sung Liang ◽  
Jiunn-Tay Lee ◽  
Hung-Wen Kao ◽  
...  

Abstract Study Objectives While insomnia and migraine are often comorbid, the shared and distinct neuroanatomical substrates underlying these disorders and the brain structures associated with the comorbidity are unknown. We aimed to identify patterns of neuroanatomical substrate alterations associated with migraine and insomnia comorbidity. Methods High-resolution T1-weighted images were acquired from subjects with insomnia, migraine, and comorbid migraine and insomnia, respectively, and healthy controls (HC). Direct group comparisons with HC followed by conjunction analyses identified shared regional gray matter volume (GMV) alterations between the disorders. To further examine large-scale anatomical network changes, a seed-based structural covariance network (SCN) analysis was applied. Conjunction analyses also identified common SCN alterations in two disease groups, and we further evaluated these shared regional and global neuroanatomical signatures in the comorbid group. Results Compared with controls, patients with migraine and insomnia showed GMV changes in the cerebellum and the lingual, precentral, and postcentral gyri (PCG). The bilateral PCG were common GMV alteration sites in both groups, with decreased structural covariance integrity observed in the cerebellum. In patients with comorbid migraine and insomnia, shared regional GMV and global SCN changes were consistently observed. The GMV of the right PCG also correlated with sleep quality in these patients. Conclusion These findings highlight the specific role of the PCG in the shared pathophysiology of insomnia and migraine from a regional and global brain network perspective. These multilevel neuroanatomical changes could be used as potential image markers to decipher the comorbidity of the two disorders.


2005 ◽  
Vol 58 (3-4b) ◽  
pp. 361-377 ◽  
Author(s):  
Peter Bright ◽  
Helen E. Moss ◽  
Emmanuel A. Stamatakis ◽  
Lorraine K. Tyler

How objects are represented and processed in the brain remains a key issue in cognitive neuroscience. We have developed a conceptual structure account in which category-specific semantic deficits emerge due to differences in the structure and content of concepts rather than from explicit divisions of conceptual knowledge in separate stores. The primary claim is that concepts associated with particular categories (e.g., animals, tools) differ in the number and type of properties and the extent to which these properties are correlated with each other. In this review, we describe recent neuropsychological and neuroimaging studies in which we have extended our theoretical account by incorporating recent claims about the neuroanatomical basis of feature integration and differentiation that arise from research into hierarchical object processing streams in nonhuman primates and humans. A clear picture has emerged in which the human perirhinal cortex and neighbouring anteromedial temporal structures appear to provide the neural infrastructure for making fine-grained discriminations among objects, suggesting that damage within the perirhinal cortex may underlie the emergence of category-specific semantic deficits in brain-damaged patients.


2005 ◽  
Vol 28 (2) ◽  
pp. 143-144 ◽  
Author(s):  
Josef P. Rauschecker

Recent studies in human and nonhuman primates demonstrate that auditory objects, including speech sounds, are identified in anterior superior temporal cortex projecting directly to inferior frontal regions and not along a posterior pathway, as classically assumed. By contrast, the role of posterior temporal regions in speech and language remains largely unexplained, although a concept of vocal gestures may be helpful.


2009 ◽  
Vol 102 (6) ◽  
pp. 3079-3081 ◽  
Author(s):  
Zane Z. Zheng

The planum temporale (PT) is an anatomically heterogeneous area with several architectonic subdivisions and extensive connections with other parts of the brain. Here I review a functional MRI study investigating the role of a functionally defined area (Spt) within the left PT in speech motor processing and discuss the functional properties of PT regions in the context of findings from recent neurophysiological and neuroimaging studies.


2015 ◽  
Vol 112 (10) ◽  
pp. 2972-2977 ◽  
Author(s):  
Jianqiao Ge ◽  
Gang Peng ◽  
Bingjiang Lyu ◽  
Yi Wang ◽  
Yan Zhuo ◽  
...  

How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca’s and Wernicke’s areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension.


2021 ◽  
Vol 11 (5) ◽  
pp. 560
Author(s):  
Marion Criaud ◽  
Jean-Luc Anton ◽  
Bruno Nazarian ◽  
Marieke Longcamp ◽  
Elise Metereau ◽  
...  

The basal ganglia (BG) have long been known for contributing to the regulation of motor behaviour by means of a complex interplay between tonic and phasic inhibitory mechanisms. However, after having focused for a long time on phasic reactive mechanisms, it is only recently that psychological research in healthy humans has modelled tonic proactive mechanisms of control. Mutual calibration between anatomo-functional and psychological models is still needed to better understand the unclear role of the BG in the interplay between proactive and reactive mechanisms of control. Here, we implemented an event-related fMRI design allowing proper analysis of both the brain activity preceding the target-stimulus and the brain activity induced by the target-stimulus during a simple go/nogo task, with a particular interest in the ambiguous role of the basal ganglia. Post-stimulus activity was evoked in the left dorsal striatum, the subthalamus nucleus and internal globus pallidus by any stimulus when the situation was unpredictable, pinpointing its involvement in reactive, non-selective inhibitory mechanisms when action restraint is required. Pre-stimulus activity was detected in the ventral, not the dorsal, striatum, when the situation was unpredictable, and was associated with changes in functional connectivity with the early visual, not the motor, cortex. This suggests that the ventral striatum supports modulatory influence over sensory processing during proactive control.


Sign in / Sign up

Export Citation Format

Share Document