scholarly journals Balance and Lower Limb Muscle Activation Between in-Line and Traditional Lunge Exercises

2018 ◽  
Vol 62 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Mauro A. Guiselini ◽  
Josinaldo J. da Silva ◽  
Raymond Tucker ◽  
David G. Behm ◽  
...  

Abstract In-line and traditional lunge exercises present differences in technique as lower limb positioning (anterioposterior), and medio-lateral (ML) balance may differentially affect primary and stabilizer muscles. The purposes of this study were to examine ML balance and muscle activation in anterior and posterior leg positions between in-line and traditional lunge exercises. Fifteen young, healthy, resistance-trained men (25 ± 5 years) performed 2 different lunge exercises (in-line and traditional) at their 10 repetition maximum in a randomized, counterbalanced fashion. Surface electromyography measured muscle activation of the vastus lateralis, biceps femoris, gluteus maximus, and gluteus medius. ML balance was measured with a Wii Fit Balance Board. The vastus lateralis activity was not significantly different between exercises or leg positions. The biceps femoris activity was not significantly different between exercises, however, it was significantly greater in the anterior compared to the posterior position for the in-line (p = 0.003), and traditional lunge (p < 0.001). The gluteus maximus activity was not significantly different between exercises, however, it was significantly greater in the anterior compared to posterior position for the in-line (p < 0.001) and traditional lunge (p < 0.001). ML balance was significantly greater in the in-line exercise in the anterior limb (p = 0.001). Thus, both in-line and traditional lunge exercises presented similar overall levels of muscle activation, yet the anterior limb generated the highest biceps femoral and gluteus maximus muscle activation when compared to the posterior limb. The in-line lunge presents greater ML balance when compared to the traditional lunge exercise.

2020 ◽  
Vol 29 (8) ◽  
pp. 1100-1105
Author(s):  
Mohammad H. Izadi Farhadi ◽  
Foad Seidi ◽  
Hooman Minoonejad ◽  
Abbey C. Thomas

Context: Many factors have been reported contributing to altering the neuromuscular function of hip and knee muscles. The lumbar hyperlordosis, as a poor posture in some athletes, is thought to be associated with the alteration of the hip and knee muscles activity. Objective: To examine the activation of selected hip and knee muscles in athletes with and without lumbar hyperlordosis during functional activities. Design: Case-control study. Setting: University laboratory. Participants: Twenty-six college male athletes (n = 13 with and n = 13 without lumbar hyperlordosis). Interventions: Surface electromyography of gluteus maximus (GMAX), gluteus medius (GMED), vastus medialis oblique (VMO), and vastus lateralis (VL) were recorded during single-leg squat and single-leg jump landing (SLJL) tasks. Main Outcome Measure: Preactivity; reactivity; and onset muscle during SLJL and eccentric activity during single-leg squat (GMAX, GMED, VMO, and VL along with the ratio of VMO:VL) were assessed. Results: Athletes with lumbar hyperlordosis had a higher level of activity in their GMAX (P = .003), VMO (P = .04), and VL (P = .01) muscles at the moment before foot contact during SLJL. These athletes also demonstrated a higher level of GMAX activity (P = .01) immediately after foot contact. Finally, athletes with lumbar hyperlordosis activated their GMAX sooner (P = .02) during the SLJL. Athletes with normal lumbar lordosis had more activity in their GMED muscle (P = .001) in the descending phase of the single-leg squat task and a higher VMO:VL (P = .01) at the moment after the foot contact during the SLJL. Conclusion: The altered activation of GMAX, GMED, VMO, VL, and VMO:VL can reveal the role of lumbar hyperlordosis in the knee and hip muscles’ alteration in athletes. Further study is needed to identify whether these alterations in the hip and knee muscles contribute to injury in athletes.


Author(s):  
Ruoli Wang ◽  
Laura Martín de Azcárate ◽  
Paul Sandamas ◽  
Anton Arndt ◽  
Elena M. Gutierrez-Farewik

BackgroundAt the beginning of a sprint, the acceleration of the body center of mass (COM) is driven mostly forward and vertically in order to move from an initial crouched position to a more forward-leaning position. Individual muscle contributions to COM accelerations have not been previously studied in a sprint with induced acceleration analysis, nor have muscle contributions to the mediolateral COM accelerations received much attention. This study aimed to analyze major lower-limb muscle contributions to the body COM in the three global planes during the first step of a sprint start. We also investigated the influence of step width on muscle contributions in both naturally wide sprint starts (natural trials) and in sprint starts in which the step width was restricted (narrow trials).MethodMotion data from four competitive sprinters (2 male and 2 female) were collected in their natural sprint style and in trials with a restricted step width. An induced acceleration analysis was performed to study the contribution from eight major lower limb muscles (soleus, gastrocnemius, rectus femoris, vasti, gluteus maximus, gluteus medius, biceps femoris, and adductors) to acceleration of the body COM.ResultsIn natural trials, soleus was the main contributor to forward (propulsion) and vertical (support) COM acceleration and the three vasti (vastus intermedius, lateralis and medialis) were the main contributors to medial COM acceleration. In the narrow trials, soleus was still the major contributor to COM propulsion, though its contribution was considerably decreased. Likewise, the three vasti were still the main contributors to support and to medial COM acceleration, though their contribution was lower than in the natural trials. Overall, most muscle contributions to COM acceleration in the sagittal plane were reduced. At the joint level, muscles contributed overall more to COM support than to propulsion in the first step of sprinting. In the narrow trials, reduced COM propulsion and particularly support were observed compared to the natural trials.ConclusionThe natural wide steps provide a preferable body configuration to propel and support the COM in the sprint starts. No advantage in muscular contributions to support or propel the COM was found in narrower step widths.


Author(s):  
Przemysław Pietraszewski ◽  
Artur Gołaś ◽  
Michał Krzysztofik ◽  
Marta Śrutwa ◽  
Adam Zając

The purpose of this cross-sectional study was to analyze changes in normalized surface electromyography (sEMG) signals for the gastrocnemius medialis, biceps femoris, gluteus maximus, tibialis anterior, and vastus lateralis muscles occurring during a 400 m indoor sprint between subsequent curved sections of the track. Ten well-trained female sprinters (age: 21 ± 4 years; body mass: 47 ± 5 kg; body height: 161 ± 7 cm; 400 m personal best: 52.4 ± 1.1 s) performed an all-out 400 m indoor sprint. Normalized sEMG signals were recorded bilaterally from the selected lower limb muscles. The two-way ANOVA (curve × side) revealed no statistically significant interaction. However, the main effect analysis showed that normalized sEMG signals significantly increased in subsequent curves run for all the studied muscles: gastrocnemius medialis (p = 0.003), biceps femoris (p < 0.0001), gluteus maximus (p = 0.044), tibialis anterior (p = 0.001), and vastus lateralis (p = 0.023), but differences between limbs were significant only for the gastrocnemius medialis (p = 0.012). The results suggest that the normalized sEMG signals for the lower limb muscles increased in successive curves during the 400 m indoor sprint. Moreover, the gastrocnemius medialis of the inner leg is highly activated while running curves; therefore, it should be properly prepared for high demands, and attention should be paid to the possibility of the occurrence of a negative adaptation, such as asymmetries.


Author(s):  
Robert George Lockie ◽  
Ashley Bloodgood ◽  
Matthew Moreno ◽  
Megan McGuire ◽  
Katherine Balfany ◽  
...  

The use of surface electromyography (sEMG) wearable technology to measure training load (TL) during law enforcement-specific tasks (e.g. a body drag) requires investigation. This study determined muscle activation differences represented as TL during a 9.75-m drag with 74.84 kg and 90.72 kg dummies. Eight men and three women were fitted with a compression short or legging embedded with sEMG wearable technology to measure the quadriceps (QUAD; vastus medialis+vastus lateralis), biceps femoris (BF), and gluteus maximus (GM). After fitting on day one, participants completed maximal voluntary isometric contractions for each muscle to normalize the sEMG signal and calculate TL units. On days two and three, participants performed a 9.75 m body drag using either the 74.84 kg or the 90.72 kg dummy while wearing the technology. Participants lifted the dummy off the floor to a standing position and dragged it as quickly as possible over 9.75 m. Paired samples t-tests calculated between-drag differences for: time; QUAD, BF, GM, and total TL; and QUAD-BF, GM-BF, anterior-posterior (QUAD-GM+BF) ratios. QUAD TL was 9% greater (p=0.035), and GM TL was 8% lower (p=0.043), in the 90.72 kg body drag compared to the 74.84 kg drag. There were no between-mass differences in time, BF TL, total TL, or the ratios. QUAD TL increased while GM TL decreased when participants dragged a 90.72 kg dummy. As drag time was not different between the masses, drag mechanics may have changed leading to increased QUAD TL. sEMG wearable technology could be a useful method to measure TL in law enforcement-specific dragging tasks.


Author(s):  
Curt Laubscher ◽  
Ryan Farris ◽  
Antonie van den Bogert ◽  
Jerzy T. Sawicki

Abstract This paper presents a newly developed lower-limb exoskeleton tested for walking assistance. The novel exoskeleton design methodology uses additive manufacturing and a parametrized model based on user anthropometrics to give a person-specific custom fit. The process is applied to average children and a healthy adult, and a prototype device is fabricated for the adult to validate the feasibility of the approach. The developed prototype actuates the hip and knee joints without restricting hip abduction-adduction motion. To test usability of the device and evaluate walking assistance, user torque, mechanical energy generated, and muscle activation are analyzed in an assisted condition where the subject walks on a level treadmill with the exoskeleton powered. This is compared to an unassisted condition with the exoskeleton unpowered and a baseline condition with the subject not wearing the exoskeleton. Comparing assisted to baseline conditions, torque magnitudes increased at the hip and knee, mechanical energy generated increased at the hip but decreased at the knee, and muscle activations decreased in the Biceps Femoris and increased in the Vastus Lateralis. The presented preliminary results are inconclusive on whether the newly developed exoskeleton can assist in walking though show promise for basic usability of the device.


2017 ◽  
Vol 39 (1) ◽  
pp. 17 ◽  
Author(s):  
Mariane Fernandes Ribeiro ◽  
Ana Paula Espindula ◽  
Alex Abadio Ferreira ◽  
Luciane Aparecida Pascucci Sande de Souza ◽  
Vicente De Paula Antunes Teixeira

Hippotherapy is a therapeutic method that uses the horse’s movement to achieve functional results in practitioners with Down syndrome (DS), who present motor and neurophysiological changes that affect the musculoskeletal system. Evaluating the motor behavior related to the control and the improvement of muscle activation in practitioners with Down syndrome subjected to hippotherapy. 10 practitioners were divided into two groups: Down Group (DG) – practitioners with DS, and Healthy Group (HG) – practitioners with no physical impairment. The muscles gluteus medius, tensor fasciae latae, rectus femoris, vastus medialis, vastus lateralis, biceps femoris, tibialis anterior and gastrocnemius were evaluated by electromyography using gross RMS values, which correspond to muscle activation; the evaluations were performed on the 1st and 10th hippotherapy sessions (frequency: once a week), and after 2 months interval without treatment, they were performed on the 1st and 10th hippotherapy sessions (frequency: twice a week). It was noted that activation of the studied muscles increased with the passing of sessions, regardless the weekly frequency of attendance; however, the period without treatment resulted in reduction of this effect. Practitioners with DS presented satisfactory changes in muscle activation pattern, in learning and in motor behavior during hippotherapy sessions. 


1988 ◽  
Vol 4 (4) ◽  
pp. 315-325 ◽  
Author(s):  
J.-M. John Wilson ◽  
D. Gordon E. Robertson ◽  
J. Peter Stothart

In an effort to seek further understanding of lower limb muscle function in the rowing movement, an electromyographic analysis was undertaken of rowers rowing on a Gjessing ergometer. A strain gauged transducer was inserted in the ergometer linkage between handle and flywheel to detect pulling force. Electrodes were placed on the following lower limb muscles: gluteus maximus, biceps femoris, rectus femoris, vastus lateralis, gastrocnemius, and tibialis anterior. Linear envelope electromyograms from each muscle and the force signals were sampled synchronously at 50 Hz. The results indicated that all six muscles were active from catch to finish of the drive phase. Biceps femoris, gluteus maximus, gastrocnemius, and vastus lateralis all began their activity at or just prior to catch and reached maximal excitation near peak force of the stroke. Rectus femoris and tibialis anterior activity began prior to the catch and reached maximal excitation subsequent to peak force. The coactivation of the five leg muscles, of which four were biarticular, included potentially antagonistic actions that would cancel each other’s effects. Clearly, however, other explanations must be considered. Both gastrocnemius and biceps femoris have been shown to act as knee extensors and may do so in the case of the rowing action. Furthermore, rectus femoris may act with unchanging length as a knee extensor by functioning as a rigid link between the pelvis and tibia. In this manner, energy created by the hip extensors is transferred across the knee joint via the isometrically contracting rectus femoris muscle.


2019 ◽  
Vol 67 (1) ◽  
pp. 73-83
Author(s):  
Alireza Monajati ◽  
Eneko Larumbe-Zabala ◽  
Mark Goss-Sampson ◽  
Fernando Naclerio

AbstractThe aim of this study was to perform an electromyography comparison of three commonly used lower limb injury prevention exercises: a single-leg squat on a bench (SLSB), a double-leg squat (DLS) and a double-leg squat on a BOSU® balance trainer (DLSB). After determining the maximum isometric voluntary contraction of the hamstring and quadriceps, eight female athletes performed 3 repetitions of each exercise, while electromyography activity of the biceps femoris (BF), semitendinosus (ST), vastus lateralis (VL) and vastus medialis (VM) was monitored. Comparisons between exercises revealed higher activation in BF (descending phase: p = 0.016, d = 1.36; ascending phase: p = 0.046, d = 1.11), ST (descending phase: p = 0.04, d = 1.87; ascending phase: p = 0.04, d = 1.87), VL (ascending phase: p = 0.04, d = 1.17) and VM (descending phase: p = 0.05, d = 1.11; ascending phase: p = 0.021, d = 1.133) muscles for the SLSB compared to the DLSQ. Furthermore, higher muscular activation of the ST (ascending phase: p = 0.01, d = 1.51; descending phase: p = 0.09, d = 0.96) and VM (ascending phase: p = 0.065, d = 1.03; descending phase: p = 0.062, d = 1.05) during the SLSB with respect to the DLSB was observed. In conclusion, the SLSB elicits higher neuromuscular activation in both hamstring and quadriceps muscles compared to the other two analysed exercises. Additionally, the higher muscle activation of both medial muscles (ST and VM) during the SLSB suggests that single leg squatting exercises may enhance lower limb medial to lateral balance, and improve knee stability in the frontal plane.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Paulo Henrique Marchetti ◽  
Josinaldo Jarbas da Silva ◽  
Brad Jon Schoenfeld ◽  
Priscyla Silva Monteiro Nardi ◽  
Silvio Luis Pecoraro ◽  
...  

The purpose of this study was to compare muscle activation of the lower limb muscles when performing a maximal isometric back squat exercise over three different positions. Fifteen young, healthy, resistance-trained men performed an isometric back squat at three knee joint angles (20°, 90°, and 140°) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), and gluteus maximus (GM). In general, muscle activity was the highest at 90° for the three quadriceps muscles, yet differences in muscle activation between knee angles were muscle specific. Activity of the GM was significantly greater at 20° and 90° compared to 140°. The BF and ST displayed similar activation at all joint angles. In conclusion, knee position alters muscles activation of the quadriceps and gluteus maximus muscles. An isometric back squat at 90° generates the highest overall muscle activation, yet an isometric back squat at 140° generates the lowest overall muscle activation of the VL and GM only.


Sign in / Sign up

Export Citation Format

Share Document