scholarly journals 3D printed microfluidic device for online detection of neurochemical changes with high temporal resolution in human brain microdialysate

Lab on a Chip ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2038-2048 ◽  
Author(s):  
Isabelle C. Samper ◽  
Sally A. N. Gowers ◽  
Michelle L. Rogers ◽  
De-Shaine R. K. Murray ◽  
Sharon L. Jewell ◽  
...  

Microfluidic devices optimised for real-time monitoring of the human brain.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
ABHINAV BHUSHAN ◽  
SONALI J. KARNIK

2021 ◽  
Author(s):  
Jincheng Tong ◽  
Amadou Doumbia ◽  
Michael L. Turner ◽  
Cinzia Casiraghi

An Interdigitated array Electrode sensor (IES) is used for real-time monitoring of the crystallization dynamics of organic molecules, achieving a temporal resolution of 15 ms.


2018 ◽  
Author(s):  
Barbara Herbstritt ◽  
Benjamin Gralher ◽  
Markus Weiler

Abstract. The isotopic composition of throughfall is affected by complex exchange, enrichment, and mixing processes in the tree canopy. All interception processes occur simultaneously in space and time generating a complex pattern of throughfall in amount and isotopic composition. This pattern ultimately cascades through the entire hydrologic system and is therefore crucial for studies in catchment hydrology where recharge areas are often forested while reference meteorological stations are generally in the open. For the quasi real-time observation of the isotopic composition of both gross precipitation and throughfall we developed an approach combining an off-the-shelf membrane contactor (Membrana) with a laser-based Cavity Ring-Down Spectrometer (CRDS, Picarro), obtaining isotope readings every two seconds. For the continuous observation of the temporal effect of interception processes two setups with two CRDS instruments in parallel were used analysing gross precipitation and throughfall simultaneously. All devices were kept small to minimize dead volume and thereby, with time-lags of only four minutes, to increase the temporal resolution of isotope observations. Complementarily, meteorological variables were recorded in high temporal resolution at the same location. Comparing these high temporally resolved continuous measurements with discrete liquid or event-based bulk samples, this approach proves to be a powerful tool towards more insight in the very dynamic processes contributing to interception during rainfall events.


2019 ◽  
Vol 2 (1) ◽  
pp. 7 ◽  
Author(s):  
Francesco Giardini ◽  
Valentina Biasci ◽  
Marina Scardigli ◽  
Francesco S. Pavone ◽  
Gil Bub ◽  
...  

Optogenetics is an emerging method that uses light to manipulate electrical activity in excitable cells exploiting the interaction between light and light-sensitive depolarizing ion channels, such as channelrhodopsin-2 (ChR2). Initially used in the neuroscience, it has been adopted in cardiac research where the expression of ChR2 in cardiac preparations allows optical pacing, resynchronization and defibrillation. Recently, optogenetics has been leveraged to manipulate cardiac electrical activity in the intact heart in real-time. This new approach was applied to simulate a re-entrant circuit across the ventricle. In this technical note, we describe the development and the implementation of a new software package for real-time optogenetic intervention. The package consists of a single LabVIEW program that simultaneously captures images at very high frame rates and delivers precisely timed optogenetic stimuli based on the content of the images. The software implementation guarantees closed-loop optical manipulation at high temporal resolution by processing the raw data in workstation memory. We demonstrate that this strategy allows the simulation of a ventricular tachycardia with high stability and with a negligible loss of data with a temporal resolution of up to 1 ms.


2016 ◽  
Vol 168 ◽  
pp. 1430-1433 ◽  
Author(s):  
Pedro Novo ◽  
Margherita Dell’Aica ◽  
Dirk Janasek ◽  
René P. Zahedi

Author(s):  
Iris Haberkorn ◽  
Cosima L. Off ◽  
Michael D. Besmer ◽  
Leandro Buchmann ◽  
Alexander Mathys

Microalgae are emerging as a next-generation biotechnological production system in the pharmaceutical, biofuel, and food domain. The economization of microalgal biorefineries remains a main target, where culture contamination and prokaryotic upsurge are main bottlenecks to impair culture stability, reproducibility, and consequently productivity. Automated online flow cytometry (FCM) is gaining momentum as bioprocess optimization tool, as it allows for spatial and temporal landscaping, real-time investigations of rapid microbial processes, and the assessment of intrinsic cell features. So far, automated online FCM has not been applied to microalgal ecosystems but poses a powerful technology for improving the feasibility of microalgal feedstock production through in situ, real-time, high-temporal resolution monitoring. The study lays the foundations for an application of automated online FCM implying far-reaching applications to impel and facilitate the implementation of innovations targeting at microalgal bioprocesses optimization. It shows that emissions collected on the FL1/FL3 fluorescent channels, harnessing nucleic acid staining and chlorophyll autofluorescence, enable a simultaneous assessment (quantitative and diversity-related) of prokaryotes and industrially relevant phototrophic Chlorella vulgaris in mixed ecosystems of different complexity over a broad concentration range (2.2–1,002.4 cells ⋅μL–1). Automated online FCM combined with data analysis relying on phenotypic fingerprinting poses a powerful tool for quantitative and diversity-related population dynamics monitoring. Quantitative data assessment showed that prokaryotic growth phases in engineered and natural ecosystems were characterized by different growth speeds and distinct peaks. Diversity-related population monitoring based on phenotypic fingerprinting indicated that prokaryotic upsurge in mixed cultures was governed by the dominance of single prokaryotic species. Automated online FCM is a powerful tool for microalgal bioprocess optimization owing to its adaptability to myriad phenotypic assays and its compatibility with various cultivation systems. This allows advancing bioprocesses associated with both microalgal biomass and compound production. Hence, automated online FCM poses a viable tool with applications across multiple domains within the biobased sector relying on single cell–based value chains.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Marta Canta ◽  
Désirée Baruffaldi ◽  
Ignazio Roppolo ◽  
Annalisa Chiappone ◽  
Candido F. Pirri ◽  
...  

A successful application of the 3D printed materials in the biomedical field requires extensive studies to ensure their biocompatibility at every step of the process. Here, different components suitable for cell applications, including a microfluidic device, were 3D printed using common resins and a deep analysis of their biocompatibility and post printed protocols was conducted.


Sign in / Sign up

Export Citation Format

Share Document