scholarly journals Bombyx mori Silk Fibroin Regeneration in Solution of Lanthanide Ions: A Systematic Investigation

Author(s):  
Giorgio Rizzo ◽  
Marco Lo Presti ◽  
Cinzia Giannini ◽  
Teresa Sibillano ◽  
Antonella Milella ◽  
...  

Silk Fibroin (SF) obtained from Bombyx mori is a very attractive biopolymer that can be useful for many technological applications, from optoelectronics and photonics to biomedicine. It can be processed from aqueous solutions to obtain many scaffolds. SF dissolution is possible only with the mediation of chaotropic salts that disrupt the secondary structure of the protein. As a consequence, recovered materials have disordered structures. In a previous paper, it was shown that, by modifying the standard Ajisawa’s method by using a lanthanide salt, CeCl3, as the chaotropic agent, it is possible to regenerate SF as a fibrous material with a very ordered structure, similar to that of the pristine fiber, and doped with Ce+3 ions. Since SF exhibits a moderate fluorescence which can be enhanced by the incorporation of organic molecules, ions and nanoparticles, the possibility of doping it with lanthanide ions could be an appealing approach for the development of new photonic systems. Here, a systematic investigation of the behavior of degummed SF in the presence of all lanthanide ions, Ln+3, is reported. It has been found that all lanthanide chlorides are chaotropic salts for solubilizing SF. Ln+3 ions at the beginning and the end of the series (La+3, Pr+3, Er+3, Tm+3, Yb+3, Lu+3) favor the reprecipitation of fibrous SF as already found for Ce+3. In most cases, the obtained fiber preserves the morphological and structural features of the pristine SF. With the exception of SF treated with La+3, Tm+3, and Lu+3, for all the fibers re-precipitated a concentration of Ln+3 between 0.2 and 0.4% at was measured, comparable to that measured for Ce+3-doped SF.

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Traian V. Chirila

Fibroin is a fibrous protein that can be conveniently isolated from the silk cocoons produced by the larvae of Bombyx mori silk moth. In its form as a hydrogel, Bombyx mori silk fibroin (BMSF) has been employed in a variety of biomedical applications. When used as substrates for biomaterial-cells constructs in tissue engineering, the oxygen transport characteristics of the BMSF membranes have proved so far to be adequate. However, over the past three decades the BMSF hydrogels have been proposed episodically as materials for the manufacture of contact lenses, an application that depends on substantially elevated oxygen permeability. This review will show that the literature published on the oxygen permeability of BMSF is both limited and controversial. Additionally, there is no evidence that contact lenses made from BMSF have ever reached commercialization. The existing literature is discussed critically, leading to the conclusion that BMSF hydrogels are unsuitable as materials for contact lenses, while also attempting to explain the scarcity of data regarding the oxygen permeability of BMSF. To the author’s knowledge, this review covers all publications related to the topic.


1992 ◽  
Vol 46 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Tetsuo Asakura ◽  
Motohiro Kitaguchi ◽  
Makoto Demura ◽  
Harutoshi Sakai ◽  
Keiichi Komatsu

2013 ◽  
Vol 51 (9) ◽  
pp. 742-748 ◽  
Author(s):  
Mingying Yang ◽  
Wen He ◽  
Yajun Shuai ◽  
Sijia Min ◽  
Liangjun Zhu

2016 ◽  
Vol 17 (9) ◽  
pp. 1517 ◽  
Author(s):  
Tetsuo Asakura ◽  
Masanori Endo ◽  
Misaki Hirayama ◽  
Hiroki Arai ◽  
Akihiro Aoki ◽  
...  

1985 ◽  
Vol 41 (6) ◽  
pp. T231-T234
Author(s):  
Masuhiro Tsukada ◽  
Masanobu Nagura ◽  
Hiroshi Ishikawa

Sign in / Sign up

Export Citation Format

Share Document