scholarly journals External Mechanical Work in Runners With Unilateral Transfemoral Amputation

Author(s):  
Hiroto Murata ◽  
Genki Hisano ◽  
Daisuke Ichimura ◽  
Hiroshi Takemura ◽  
Hiroaki Hobara

Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like “bouncing step” using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb’s step and decelerated in the unaffected limb’s step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running.

1975 ◽  
Vol 39 (1) ◽  
pp. 174-179 ◽  
Author(s):  
G. A. Cavagna

Walking and running on the level involves external mechanical work, even when speed averaged over a complete stride remains constant. This work must be performed by the muscles to accelerate and/or raise the center of mass of the body during parts of the stride, replacing energy which is lost as the body slows and/or falls during other parts of the stride. External work can be measured with fair approximation by means of a force plate, which records the horizontal and vertical components of the resultant force applied by the body to the ground over a complete stride. The horizontal force and the vertical force minus the body weight are integrated electronically to determine the instantaneous velocity in each plane. These velocities are squared and multiplied by one-half the mass to yield the instantaneous kinetic energy. The change in potential energy is calculated by integrating vertical velocity as a function of time to yield vertical displacement and multiplying this by body weight. The total mechanical energy as a function of time is obtained by adding the instantaneous kinetic and potential energies. The positive external mechanical work is obtained by adding the increments in total mechanical energy over an integral number of strides.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
J R Usherwood

Synopsis Animal legs are diverse, complex, and perform many roles. One defining requirement of legs is to facilitate terrestrial travel with some degree of economy. This could, theoretically, be achieved without loss of mechanical energy if the body could take a continuous horizontal path supported by vertical forces only—effectively a wheel-like translation, and a condition closely approximated by walking tortoises. If this is a potential strategy for zero mechanical work cost among quadrupeds, how might the structure, posture, and diversity of both sprawled and parasagittal legs be interpreted? In order to approach this question, various linkages described during the industrial revolution are considered. Watt’s linkage provides an analogue for sprawled vertebrates that uses diagonal limb support and shows how vertical-axis joints could enable approximately straight-line horizontal translation while demanding minimal mechanical power. An additional vertical-axis joint per leg results in the wall-mounted pull-out monitor arm and would enable translation with zero mechanical work due to weight support, without tipping or toppling. This is consistent with force profiles observed in tortoises. The Peaucellier linkage demonstrates that parasagittal limbs with lateral-axis joints could also achieve the zero-work strategy. Suitably tuned four-bar linkages indicate this is feasibly approximated for flexed, biologically realistic limbs. Where “walking” gaits typically show out of phase fluctuation in center of mass kinetic and gravitational potential energy, and running, hopping or trotting gaits are characterized by in-phase energy fluctuations, the zero limb-work strategy approximated by tortoises would show zero fluctuations in kinetic or potential energy. This highlights that some gaits, perhaps particularly those of animals with sprawled or crouched limbs, do not fit current kinetic gait definitions; an additional gait paradigm, the “zero limb-work strategy” is proposed.


2006 ◽  
Vol 31 (5) ◽  
pp. 631-634 ◽  
Author(s):  
Masahiro Kaneko ◽  
Kazuki Miyatsuji ◽  
Satoru Tanabe

To estimate energy cost of a gymnastic-like exercise performed by an astronaut during spaceflight (cosmic exercise), energy expenditure was determined by measuring mechanical work done around the center of mass (COM) of the body. The cosmic exercise, which consisted of whole-body flexion and extension, was performed during a spaceflight and recorded with a video camera. By analyzing the videotape, the internal mechanical work (Wint) against inertia load of the body segments was calculated. To compare how human muscles work on Earth, a motion similar to the cosmic exercise was performed by a control subject who had a physique similar to that of the astronaut. The total mechanical power of the astronaut was determined to be about 119 W; although the control subject showed a similar total power value, half of the power was external work (Wext) against gravitational load. By assuming a mechanical efficiency of 0.25, the energy expenditure was estimated to be 476 W or 7.7 W/kg, which is equivalent to that expended during fast walking and half of that used during moderate-speed running. Our results suggest that this form of cosmic exercise is appropriate for astronauts in space and can be performed safely, as there are no COM shifts while floating in a spacecraft and no vibratory disturbance.


2009 ◽  
Vol 106 (6) ◽  
pp. 1763-1770 ◽  
Author(s):  
Nicolas Peyrot ◽  
David Thivel ◽  
Laurie Isacco ◽  
Jean-Benoît Morin ◽  
Pascale Duche ◽  
...  

Net metabolic cost of walking normalized by body mass ( CW·BM−1; in J·kg−1·m−1) is greater in obese than in normal-weight individuals, and biomechanical differences could be responsible for this greater net metabolic cost. We hypothesized that, in obese individuals, greater mediolateral body center of mass (COM) displacement and lower recovery of mechanical energy could induce an increase in the external mechanical work required to lift and accelerate the COM and thus in net CW·BM−1. Body composition and standing metabolic rate were measured in 23 obese and 10 normal-weight adolescents. Metabolic and mechanical energy costs were assessed while walking along an outdoor track at four speeds (0.75–1.50 m/s). Three-dimensional COM accelerations were measured by means of a tri-axial accelerometer and gyroscope and integrated twice to obtain COM velocities, displacements, and fluctuations in potential and kinetic energies. Last, external mechanical work (J·kg−1·m−1), mediolateral COM displacement, and the mechanical energy recovery of the inverted pendulum were calculated. Net CW·BM−1 was 25% higher in obese than in normal-weight subjects on average across speeds, and net CW·BM−67 (J·kg−0.67·m−1) was significantly related to percent body fat ( r2 = 0.46). However, recovery of mechanical energy and the external work performed (J·kg−1·m−1) were similar in the two groups. The mediolateral displacement was greater in obese subjects and significantly related to percent body fat ( r2 = 0.64). The mediolateral COM displacement, likely due to greater step width, was significantly related to net CW·BM−67 ( r2 = 0.49). In conclusion, we speculate that the greater net CW·BM−67 in obese subjects may be partially explained by the greater step-to-step transition costs associated with wide gait during walking.


2004 ◽  
Vol 20 (3) ◽  
pp. 324-331 ◽  
Author(s):  
Jean Slawinski ◽  
Véronique Billat ◽  
Jean-Pierre Koralsztein ◽  
Michel Tavernier

The purpose of this study was to estimate the difference between potential and kinetic mechanical powers in running (Pke, Ppe) calculated from the center of mass and one anatomic point of the body located on the lower part of the runner's back, the “lumbar point.” Six runners undertook a treadmill run at constant velocity and were filmed individually with a video camera (25 Hz). The 3-D motion analysis system, ANIMAN3D, uses a numerical manikin (MAN3D) which compares a voluminal subject (the athlete) directly to the manikin which possesses the same voluminal properties. This analysis system allows the trajectories of the center of mass and the lumbar point to be calculated. Then, from these trajectories, potential and kinetic mechanical powers in running are calculated. The results show that the utilization of the lumbar point rather than the runner's center of mass leads to a significant overestimation of Pkeand a significant underestimation of Ppe(bothp< 0.05). In spite of these differences, however, both methods of calculating Pkeand Ppeare well correlated: respectively,r= 0.92;p≤ 0.01, andr= 0.68;p≤ 0.05. Taking into account that the trajectory of an anatomic point is experimentally easier to access than that of the center of mass, such a point could be used to estimate the evolution of kinetic or potential energy variation in different cases. However, when the lumbar point rather than the center of mass is used to estimate the mechanical energy produced in running, Pkecould appear to be a discriminating parameter, which it is not.


2013 ◽  
Vol 109 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Seyed A. Safavynia ◽  
Lena H. Ting

We hypothesized that motor outputs are hierarchically organized such that descending temporal commands based on desired task-level goals flexibly recruit muscle synergies that specify the spatial patterns of muscle coordination that allow the task to be achieved. According to this hypothesis, it should be possible to predict the patterns of muscle synergy recruitment based on task-level goals. We demonstrated that the temporal recruitment of muscle synergies during standing balance control was robustly predicted across multiple perturbation directions based on delayed sensorimotor feedback of center of mass (CoM) kinematics (displacement, velocity, and acceleration). The modulation of a muscle synergy's recruitment amplitude across perturbation directions was predicted by the projection of CoM kinematic variables along the preferred tuning direction(s), generating cosine tuning functions. Moreover, these findings were robust in biphasic perturbations that initially imposed a perturbation in the sagittal plane and then, before sagittal balance was recovered, perturbed the body in multiple directions. Therefore, biphasic perturbations caused the initial state of the CoM to differ from the desired state, and muscle synergy recruitment was predicted based on the error between the actual and desired upright state of the CoM. These results demonstrate that that temporal motor commands to muscle synergies reflect task-relevant error as opposed to sensory inflow. The proposed hierarchical framework may represent a common principle of motor control across motor tasks and levels of the nervous system, allowing motor intentions to be transformed into motor actions.


1995 ◽  
Vol 79 (6) ◽  
pp. 2078-2085 ◽  
Author(s):  
M. Bourdin ◽  
A. Belli ◽  
L. M. Arsac ◽  
C. Bosco ◽  
J. R. Lacour

This investigation examined, in a group of 10 trained male runners, the effect of vertical loading during level treadmill running at a velocity of 5 m/s. The net energy cost of running (Cr), the external work of the center of mass of the body (Wext; both expressed in J.kg-1.m-1), and the eccentric-to-concentric ratio (Ecc/Con) of integrated electromyographic activity for the vastus lateralis (VL) and gastrocnemius lateralis muscles were measured. It was observed that Wext and Ecc/Con for the VL could explain a large part of the interindividual variations in Cr. This result reinforces the hypothesis that Ecc/Con could be a good index of effectiveness in the stretch-shortening cycle. When the subjects ran with a vertical load of 9.3% of their body mass, Cr and Wext were significantly reduced (P < 0.01 and P < 0.05, respectively), whereas Ecc/Con for the VL and gastrocnemius lateralis remained unchanged. The variations in Cr and Wext due to vertical loading were significantly correlated (r = 0.75; P < 0.01). It was then concluded that the significant improvement of Cr observed with the added load was mainly due to the fact that Wext was significantly decreased.


1993 ◽  
Vol 83 (11) ◽  
pp. 615-624 ◽  
Author(s):  
HJ Dananberg

The body is designed to pull the center of mass over a single pivotal site formed by dorsiflexion of the first metatarsophalangeal joint. If this response dorsiflexion motion is blocked by functional hallux limitus, then the kinetic energy, which is created for this motion, must somehow be dissipated. The process by which this dissipation occurs creates a specific pattern of compensations which, in the past, has been seen as primary motions unrelated to sagittal plane blockade. These compensatory motions are described along with a brief section concerning the methods of treatment.


Geophysics ◽  
1953 ◽  
Vol 18 (4) ◽  
pp. 913-928 ◽  
Author(s):  
Svend Saxov ◽  
Kurt Nygaard

The residual gravity anomaly at a point is defined as the difference between the average anomalies along two concentric circles whose center is at the point, divided by the difference between the two radii or [Formula: see text] It is shown that the residual anomalies previously determined by the average circle or the average polygon method (Griffin, 1949) are included in the present definition. The second vertical derivative of g and, to some extent, the fourth vertical derivative of g (Peters, 1949) are also included. The relation between the residual anomalies and the depth of the subterranean masses is examined. It has been pointed out that the gravitational effect originating from a body with mass m is clearly apparent when the center of mass of the body has the depth [Formula: see text]. The influence from masses at a greater or lesser depth is almost eliminated. By avoiding the use of the center point in the figuring of the residual anomalies the influence of random errors is minimized.


Author(s):  
Ruoli Wang ◽  
Laura Martín de Azcárate ◽  
Paul Sandamas ◽  
Anton Arndt ◽  
Elena M. Gutierrez-Farewik

BackgroundAt the beginning of a sprint, the acceleration of the body center of mass (COM) is driven mostly forward and vertically in order to move from an initial crouched position to a more forward-leaning position. Individual muscle contributions to COM accelerations have not been previously studied in a sprint with induced acceleration analysis, nor have muscle contributions to the mediolateral COM accelerations received much attention. This study aimed to analyze major lower-limb muscle contributions to the body COM in the three global planes during the first step of a sprint start. We also investigated the influence of step width on muscle contributions in both naturally wide sprint starts (natural trials) and in sprint starts in which the step width was restricted (narrow trials).MethodMotion data from four competitive sprinters (2 male and 2 female) were collected in their natural sprint style and in trials with a restricted step width. An induced acceleration analysis was performed to study the contribution from eight major lower limb muscles (soleus, gastrocnemius, rectus femoris, vasti, gluteus maximus, gluteus medius, biceps femoris, and adductors) to acceleration of the body COM.ResultsIn natural trials, soleus was the main contributor to forward (propulsion) and vertical (support) COM acceleration and the three vasti (vastus intermedius, lateralis and medialis) were the main contributors to medial COM acceleration. In the narrow trials, soleus was still the major contributor to COM propulsion, though its contribution was considerably decreased. Likewise, the three vasti were still the main contributors to support and to medial COM acceleration, though their contribution was lower than in the natural trials. Overall, most muscle contributions to COM acceleration in the sagittal plane were reduced. At the joint level, muscles contributed overall more to COM support than to propulsion in the first step of sprinting. In the narrow trials, reduced COM propulsion and particularly support were observed compared to the natural trials.ConclusionThe natural wide steps provide a preferable body configuration to propel and support the COM in the sprint starts. No advantage in muscular contributions to support or propel the COM was found in narrower step widths.


Sign in / Sign up

Export Citation Format

Share Document