Force platforms as ergometers

1975 ◽  
Vol 39 (1) ◽  
pp. 174-179 ◽  
Author(s):  
G. A. Cavagna

Walking and running on the level involves external mechanical work, even when speed averaged over a complete stride remains constant. This work must be performed by the muscles to accelerate and/or raise the center of mass of the body during parts of the stride, replacing energy which is lost as the body slows and/or falls during other parts of the stride. External work can be measured with fair approximation by means of a force plate, which records the horizontal and vertical components of the resultant force applied by the body to the ground over a complete stride. The horizontal force and the vertical force minus the body weight are integrated electronically to determine the instantaneous velocity in each plane. These velocities are squared and multiplied by one-half the mass to yield the instantaneous kinetic energy. The change in potential energy is calculated by integrating vertical velocity as a function of time to yield vertical displacement and multiplying this by body weight. The total mechanical energy as a function of time is obtained by adding the instantaneous kinetic and potential energies. The positive external mechanical work is obtained by adding the increments in total mechanical energy over an integral number of strides.

Author(s):  
Hiroto Murata ◽  
Genki Hisano ◽  
Daisuke Ichimura ◽  
Hiroshi Takemura ◽  
Hiroaki Hobara

Carbon-fiber running-specific prostheses have enabled individuals with lower extremity amputation to run by providing a spring-like leg function in their affected limb. When individuals without amputation run at a constant speed on level ground, the net external mechanical work is zero at each step to maintain a symmetrical bouncing gait. Although the spring-like “bouncing step” using running-specific prostheses is considered a prerequisite for running, little is known about the underlying mechanisms for unilateral transfemoral amputees. The aim of this study was to investigate external mechanical work at different running speeds for unilateral transfemoral amputees wearing running-specific prostheses. Eight unilateral transfemoral amputees ran on a force-instrumented treadmill at a range of speeds (30, 40, 50, 60, 70, and 80% of the average speed of their 100-m personal records). We calculated the mechanical energy of the body center of mass (COM) by conducting a time-integration of the ground reaction forces in the sagittal plane. Then, the net external mechanical work was calculated as the difference between the mechanical energy at the initial and end of the stance phase. We found that the net external work in the affected limb tended to be greater than that in the unaffected limb across the six running speeds. Moreover, the net external work of the affected limb was found to be positive, while that of the unaffected limb was negative across the range of speeds. These results suggest that the COM of unilateral transfemoral amputees would be accelerated in the affected limb’s step and decelerated in the unaffected limb’s step at each bouncing step across different constant speeds. Therefore, unilateral transfemoral amputees with passive prostheses maintain their bouncing steps using a limb-specific strategy during running.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
J R Usherwood

Synopsis Animal legs are diverse, complex, and perform many roles. One defining requirement of legs is to facilitate terrestrial travel with some degree of economy. This could, theoretically, be achieved without loss of mechanical energy if the body could take a continuous horizontal path supported by vertical forces only—effectively a wheel-like translation, and a condition closely approximated by walking tortoises. If this is a potential strategy for zero mechanical work cost among quadrupeds, how might the structure, posture, and diversity of both sprawled and parasagittal legs be interpreted? In order to approach this question, various linkages described during the industrial revolution are considered. Watt’s linkage provides an analogue for sprawled vertebrates that uses diagonal limb support and shows how vertical-axis joints could enable approximately straight-line horizontal translation while demanding minimal mechanical power. An additional vertical-axis joint per leg results in the wall-mounted pull-out monitor arm and would enable translation with zero mechanical work due to weight support, without tipping or toppling. This is consistent with force profiles observed in tortoises. The Peaucellier linkage demonstrates that parasagittal limbs with lateral-axis joints could also achieve the zero-work strategy. Suitably tuned four-bar linkages indicate this is feasibly approximated for flexed, biologically realistic limbs. Where “walking” gaits typically show out of phase fluctuation in center of mass kinetic and gravitational potential energy, and running, hopping or trotting gaits are characterized by in-phase energy fluctuations, the zero limb-work strategy approximated by tortoises would show zero fluctuations in kinetic or potential energy. This highlights that some gaits, perhaps particularly those of animals with sprawled or crouched limbs, do not fit current kinetic gait definitions; an additional gait paradigm, the “zero limb-work strategy” is proposed.


2006 ◽  
Vol 31 (5) ◽  
pp. 631-634 ◽  
Author(s):  
Masahiro Kaneko ◽  
Kazuki Miyatsuji ◽  
Satoru Tanabe

To estimate energy cost of a gymnastic-like exercise performed by an astronaut during spaceflight (cosmic exercise), energy expenditure was determined by measuring mechanical work done around the center of mass (COM) of the body. The cosmic exercise, which consisted of whole-body flexion and extension, was performed during a spaceflight and recorded with a video camera. By analyzing the videotape, the internal mechanical work (Wint) against inertia load of the body segments was calculated. To compare how human muscles work on Earth, a motion similar to the cosmic exercise was performed by a control subject who had a physique similar to that of the astronaut. The total mechanical power of the astronaut was determined to be about 119 W; although the control subject showed a similar total power value, half of the power was external work (Wext) against gravitational load. By assuming a mechanical efficiency of 0.25, the energy expenditure was estimated to be 476 W or 7.7 W/kg, which is equivalent to that expended during fast walking and half of that used during moderate-speed running. Our results suggest that this form of cosmic exercise is appropriate for astronauts in space and can be performed safely, as there are no COM shifts while floating in a spacecraft and no vibratory disturbance.


2015 ◽  
Vol 31 (6) ◽  
pp. 445-451 ◽  
Author(s):  
Gabriela Fischer ◽  
Jorge L.L. Storniolo ◽  
Leonardo A. Peyré-Tartaruga

The purpose of this study was to investigate the effects of acute fatigue on spring-mass model (SMM) parameters among recreational runners at different speeds. Eleven participants (5 males and 6 females) performed running trials at slower, self-selected, and faster speeds on an indoor track before and after performing a fatigue protocol (60 s of countermovement jumps). Maximal vertical force (Fmax), impact peak force (Fpeak), loading rate (LR), contact time (Tc), aerial time (Ta), step frequency (SF), step length (SL), maximal vertical displacement of the center of mass (ΔZ), vertical stiffness (Kvert), and leg work (Wleg) were measured using a force plate integrated into the track. A significant reduction (–43.1 ± 8.6%; P < .05) in mechanical power during jumps indicated that the subjects became fatigued. The results showed that under fatigue conditions, the runners adjusted their running mechanics at slower (≈2.7 ms–1; ΔZ –12% and SF +3.9%; P < .05), self-selected (≈3.3 ms–1; SF +3%, SL –6.8%, Ta –16%, and Fmax –3.3%; P < .05), and faster (≈3.6 ms–1 SL –6.9%, Ta –14% and Fpeak –9.8%; P < .05) speeds without significantly altering Kvert (P > .05). During constant running, the previous 60 s of maximal vertical jumps induced mechanical adjustments in the spatiotemporal parameters without altering Kvert.


1989 ◽  
Vol 67 (4) ◽  
pp. 1692-1698 ◽  
Author(s):  
R. Kram ◽  
A. J. Powell

Muscle, bone, and tendon forces; the movement of the center of mass, and the spring properties of the body during terrestrial locomotion can be measured using ground-mounted force platforms. These measurements have been extremely time consuming because of the difficulty in obtaining repeatable constant speed trials (particularly with animals). We have overcome this difficulty by mounting a force platform directly under the belt of a motorized treadmill. With this arrangement, vertical force can be recorded from an unlimited number of successive ground contacts in a much shorter time. With this treadmill-mounted force platform it is possible to accurately make the following measurements over the full range of steady speeds and under various perturbations of normal gait: 1) vertical ground reaction force over the course of the contact phase; 2) peak forces in bone, muscle, and tendon; 3) the vertical displacement of the center of mass; and 4) contact time for the limbs. In our treadmill-force platform design, belt forces and frictional forces cause no measurable cross-talk problem. Natural frequency (160 Hz), nonlinearity (less than 5%), and position independence (less than 2%) are all quite acceptable. Motor-caused vibrations are greater than 150 Hz and thus can be easily filtered.


1997 ◽  
Vol 200 (13) ◽  
pp. 1919-1929 ◽  
Author(s):  
R Kram ◽  
B Wong ◽  
R J Full

We tested the hypothesis that fast-running hexapeds must generate high levels of kinetic energy to cycle their limbs rapidly compared with bipeds and quadrupeds. We used high-speed video analysis to determine the three-dimensional movements of the limbs and bodies of cockroaches (Blaberus discoidalis) running on a motorized treadmill at 21 cm s-1 using an alternating tripod gait. We combined these kinematic data with morphological data to calculate the mechanical energy produced to move the limbs relative to the overall center of mass and the mechanical energy generated to rotate the body (head + thorax + abdomen) about the overall center of mass. The kinetic energy involved in moving the limbs was 8 microJ stride-1 (a power output of 21 mW kg-1, which was only approximately 13% of the external mechanical energy generated to lift and accelerate the overall center of mass at this speed. Pitch, yaw and roll rotational movements of the body were modest (less than +/- 7 degrees), and the mechanical energy required for these rotations was surprisingly small (1.7 microJ stride-1 for pitch, 0.5 microJ stride-1 for yaw and 0.4 microJ stride-1 for roll) as was the power (4.2, 1.2 and 1.1 mW kg-1, respectively). Compared at the same absolute forward speed, the mass-specific kinetic energy generated by the trotting hexaped to swing its limbs was approximately half of that predicted from data on much larger two- and four-legged animals. Compared at an equivalent speed (mid-trotting speed), limb kinetic energy was a smaller fraction of total mechanical energy for cockroaches than for large bipedal runners and hoppers and for quadrupedal trotters. Cockroaches operate at relatively high stride frequencies, but distribute ground reaction forces over a greater number of relatively small legs. The relatively small leg mass and inertia of hexapeds may allow relatively high leg cycling frequencies without exceptionally high internal mechanical energy generation.


2009 ◽  
Vol 106 (6) ◽  
pp. 1763-1770 ◽  
Author(s):  
Nicolas Peyrot ◽  
David Thivel ◽  
Laurie Isacco ◽  
Jean-Benoît Morin ◽  
Pascale Duche ◽  
...  

Net metabolic cost of walking normalized by body mass ( CW·BM−1; in J·kg−1·m−1) is greater in obese than in normal-weight individuals, and biomechanical differences could be responsible for this greater net metabolic cost. We hypothesized that, in obese individuals, greater mediolateral body center of mass (COM) displacement and lower recovery of mechanical energy could induce an increase in the external mechanical work required to lift and accelerate the COM and thus in net CW·BM−1. Body composition and standing metabolic rate were measured in 23 obese and 10 normal-weight adolescents. Metabolic and mechanical energy costs were assessed while walking along an outdoor track at four speeds (0.75–1.50 m/s). Three-dimensional COM accelerations were measured by means of a tri-axial accelerometer and gyroscope and integrated twice to obtain COM velocities, displacements, and fluctuations in potential and kinetic energies. Last, external mechanical work (J·kg−1·m−1), mediolateral COM displacement, and the mechanical energy recovery of the inverted pendulum were calculated. Net CW·BM−1 was 25% higher in obese than in normal-weight subjects on average across speeds, and net CW·BM−67 (J·kg−0.67·m−1) was significantly related to percent body fat ( r2 = 0.46). However, recovery of mechanical energy and the external work performed (J·kg−1·m−1) were similar in the two groups. The mediolateral displacement was greater in obese subjects and significantly related to percent body fat ( r2 = 0.64). The mediolateral COM displacement, likely due to greater step width, was significantly related to net CW·BM−67 ( r2 = 0.49). In conclusion, we speculate that the greater net CW·BM−67 in obese subjects may be partially explained by the greater step-to-step transition costs associated with wide gait during walking.


Author(s):  
Camilo Eduardo Pérez-Cualtán ◽  
Oscar Iván Campo-Salazar

In military life, load carriage is an unavoidable part of field operations which is the reason why soldiers often make use of a military backpack. Infantry soldiers usually carry loads weighting more than 30% of their body weight. When the soldier carries a certain weight, his energy expenditure increases, which causes a reduction in performance. The transported load has a movement similar to the vertical displacement of the center of mass of the soldier while walking. This leads to a significant increase in the acceleration forces generated by the action of said load on the body which explains the increase in energy expenditure. The objective of this project was to develop a load carriage system that suspends the load and reduces its vertical displacement. Results show a reduction in both the vertical excursion of the load and in the total vertical ground reaction force when carrying a load with the developed prototype, with respect to the conventional military backpack.


2000 ◽  
Vol 203 (4) ◽  
pp. 725-739 ◽  
Author(s):  
K.D. Earls

The mechanics of avian take-off are central to hypotheses about flight evolution, but have not been quantified in terms of whole-body movements for any species. In this study, I use a combination of high-speed video analysis and force plate recording to measure the kinematics and mechanics of ground take-off in the European starling Sturnis vulgaris and the European migratory quail Coturnix coturnix. Counter to hypotheses based on the habits and morphology of each species, S. vulgaris and C. coturnix both produce 80–90 % of the velocity of take-off with the hindlimbs. S. vulgaris performs a countermovement jump (peak vertical force four times body weight) followed by wing movement, while C. coturnix performs a squat jump (peak vertical force 7.8 times body weight) with simultaneous wing movement. The wings, while necessary for continuing the movement initiated by the hindlimbs and thereafter supporting the body weight, are not the primary take-off accelerator. Comparison with one other avian species in which take-off kinematics have been recorded (Columba livia) suggests that this could be a common pattern for living birds. Given these data and the fact that running take-offs such as those suggested for an evolving proto-flier are limited to large or highly specialized living taxa, a jumping model of take-off is proposed as a more logical starting point for the evolution of avian powered flight.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Fumery ◽  
Nicolas A. Turpin ◽  
Laetitia Claverie ◽  
Vincent Fourcassié ◽  
Pierre Moretto

AbstractThe biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected. Joint torque was also computed to investigate the intra- and inter-subject strategies occurring in response to this. The ability of the subjects to move the whole system like a pendulum appeared rendered obvious through shortened step length and lowered vertical displacements at the center of mass of the system, while energy recovery rate and total mechanical energy remained constant. In parallel, an asymmetry of joint moment vertical amplitude and coupling among individuals in all pairs suggested the emergence of a leader/follower schema. Beyond the 30% threshold of increased load mass, the constraints at the joint level were balanced among individuals leading to a degraded pendulum-like behavior.


Sign in / Sign up

Export Citation Format

Share Document