scholarly journals New Genes Born-In or Invading Vertebrate Genomes

Author(s):  
Carlos Herrera-Úbeda ◽  
Jordi Garcia-Fernàndez

Which is the origin of genes is a fundamental question in Biology, indeed a question older than the discovery of genes itself. For more than a century, it was uneven to think in origins other than duplication and divergence from a previous gene. In recent years, however, the intersection of genetics, embryonic development, and bioinformatics, has brought to light that de novo generation from non-genic DNA, horizontal gene transfer and, noticeably, virus and transposon invasions, have shaped current genomes, by integrating those newcomers into old gene networks, helping to shape morphological and physiological innovations. We here summarized some of the recent research in the field, mostly in the vertebrate lineage with a focus on protein-coding novelties, showing that the placenta, the adaptative immune system, or the highly developed neocortex, among other innovations, are linked to de novo gene creation or domestication of virus and transposons. We provocatively suggest that the high tolerance to virus infections by bats may also be related to previous virus and transposon invasions in the bat lineage.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Chen Xie ◽  
Cemalettin Bekpen ◽  
Sven Künzel ◽  
Maryam Keshavarz ◽  
Rebecca Krebs-Wheaton ◽  
...  

The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, Gm13030, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of Dcpp genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation.


2017 ◽  
Author(s):  
Nikolaos Vakirlis N ◽  
Alex S Hebert ◽  
Dana A Opulente ◽  
Guillaume Achaz ◽  
Chris Todd Hittinger ◽  
...  

AbstractNew genes, with novel protein functions, can evolve “from scratch” out of intergenic sequences. These de novo genes can integrate the cell’s genetic network and drive important phenotypic innovations. Therefore, identifying de novo genes and understanding how the transition from noncoding to coding occurs are key problems in evolutionary biology. However, identifying de novo genes is a difficult task, hampered by the presence of remote homologs, fast evolving sequences and erroneously annotated protein coding genes. To overcome these limitations, we developed a procedure that handles the usual pitfalls in de novo gene identification and predicted the emergence of 703 de novo genes in 15 yeast species from two genera whose phylogeny spans at least 100 million years of evolution. We established that de novo gene origination is a widespread phenomenon in yeasts, only a few being ultimately maintained by selection. We validated 82 candidates, by providing new translation evidence for 25 of them through mass spectrometry experiments. We also unambiguously identified the mutations that enabled the transition from non-coding to coding for 30 Saccharomyces de novo genes. We found that de novo genes preferentially emerge next to divergent promoters in GC-rich intergenic regions where the probability of finding a fortuitous and transcribed ORF is the highest. We found a more than 3-fold enrichment of de novo genes at recombination hot spots, which are GC-rich and nucleosome-free regions, suggesting that meiotic recombination would be a major driving force of de novo gene emergence in yeasts.


2016 ◽  
Author(s):  
José Luis Villanueva-Cañas ◽  
Jorge Ruiz-Orera ◽  
M.Isabel Agea ◽  
Maria Gallo ◽  
David Andreu ◽  
...  

ABSTRACTThe birth of genes that encode new protein sequences is a major source of evolutionary innovation. However, we still understand relatively little about how these genes come into being and which functions they are selected for. To address these questions we have obtained a large collection of mammalian-specific gene families that lack homologues in other eukaryotic groups. We have combined gene annotations and de novo transcript assemblies from 30 different mamalian species, obtaining about 6,000 gene families. In general, the proteins in mammalian-specific gene families tend to be short and depleted in aromatic and negatively charged residues. Proteins which arose early in mammalian evolution include milk and skin polypeptides, immune response components, and proteins involved in reproduction. In contrast, the functions of proteins which have a more recent origin remain largely unknown, despite the fact that these proteins also have extensive proteomics support. We identify several previously described cases of genes originated de novo from non-coding genomic regions, supporting the idea that this mechanism frequently underlies the evolution of new protein-coding genes in mammals. Finally, we show that most young mammalian genes are preferentially expressed in testis, suggesting that sexual selection plays an important role in the emergence of new functional genes.


2019 ◽  
Author(s):  
Chen Xie ◽  
Cemalettin Bekpen ◽  
Sven Künzel ◽  
Maryam Keshavarz ◽  
Rebecca Krebs-Wheaton ◽  
...  

AbstractThe de novo emergence of new transcripts has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here we focus on three loci that have evolved from previously intergenic sequences in the house mouse (Mus musculus) and are not present in its closest relatives. We have obtained knockouts and analyzed their phenotypes, including a deep transcriptomic analysis, based on a dedicated power analysis. We show that the transcriptional networks are significantly disturbed in the knockouts and that all three genes have effects on phenotypes that are related to their expression patterns. This includes behavioral effects, skeletal differences and the regulation of the reproduction cycle in females. Substitution analysis suggests that all three genes have directly obtained an activity, without new adaptive substitutions. Our findings support the hypothesis that de novo genes can quickly adopt functions without extensive adaptation.Impact statementNew protein-coding genes emerging out of non-coding sequences can become directly functional without signatures of adaptive protein changes


2015 ◽  
Vol 370 (1678) ◽  
pp. 20140332 ◽  
Author(s):  
Aoife McLysaght ◽  
Daniele Guerzoni

The origin of novel protein-coding genes de novo was once considered so improbable as to be impossible. In less than a decade, and especially in the last five years, this view has been overturned by extensive evidence from diverse eukaryotic lineages. There is now evidence that this mechanism has contributed a significant number of genes to genomes of organisms as diverse as Saccharomyces , Drosophila , Plasmodium , Arabidopisis and human. From simple beginnings, these genes have in some instances acquired complex structure, regulated expression and important functional roles. New genes are often thought of as dispensable late additions; however, some recent de novo genes in human can play a role in disease. Rather than an extremely rare occurrence, it is now evident that there is a relatively constant trickle of proto-genes released into the testing ground of natural selection. It is currently unknown whether de novo genes arise primarily through an ‘RNA-first’ or ‘ORF-first’ pathway. Either way, evolutionary tinkering with this pool of genetic potential may have been a significant player in the origins of lineage-specific traits and adaptations.


Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Na Zhu ◽  
◽  
Emilia M. Swietlik ◽  
Carrie L. Welch ◽  
Michael W. Pauciulo ◽  
...  

Abstract Background Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined. Methods To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource – Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD. Results Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e−5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development. Conclusions Rare variant analysis of a large international consortium identified two new candidate genes—FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Alexandre Bueno Santos ◽  
Patrícia Silva Costa ◽  
Anderson Oliveira do Carmo ◽  
Gabriel da Rocha Fernandes ◽  
Larissa Lopes Silva Scholte ◽  
...  

Members of the genusChromobacteriumhave been isolated from geographically diverse ecosystems and exhibit considerable metabolic flexibility, as well as biotechnological and pathogenic properties in some species. This study reports the draft assembly and detailed sequence analysis ofChromobacterium amazonensestrain 56AF. The de novo-assembled genome is 4,556,707 bp in size and contains 4294 protein-coding and 95 RNA genes, including 88 tRNA, six rRNA, and one tmRNA operon. A repertoire of genes implicated in virulence, for example, hemolysin, hemolytic enterotoxins, colicin V, lytic proteins, and Nudix hydrolases, is present. The genome also contains a collection of genes of biotechnological interest, including esterases, lipase, auxins, chitinases, phytoene synthase and phytoene desaturase, polyhydroxyalkanoates, violacein, plastocyanin/azurin, and detoxifying compounds. Importantly, unlike otherChromobacteriumspecies, the 56AF genome contains genes for pore-forming toxin alpha-hemolysin, a type IV secretion system, among others. The analysis of theC. amazonensestrain 56AF genome reveals the versatility, adaptability, and biotechnological potential of this bacterium. This study provides molecular information that may pave the way for further comparative genomics and functional studies involvingChromobacterium-related isolates and improves our understanding of the global genomic diversity ofChromobacteriumspecies.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 692
Author(s):  
Sweta Talyan ◽  
Samantha Filipów ◽  
Michael Ignarski ◽  
Magdalena Smieszek ◽  
He Chen ◽  
...  

Diseases of the renal filtration unit—the glomerulus—are the most common cause of chronic kidney disease. Podocytes are the pivotal cell type for the function of this filter and focal-segmental glomerulosclerosis (FSGS) is a classic example of a podocytopathy leading to proteinuria and glomerular scarring. Currently, no targeted treatment of FSGS is available. This lack of therapeutic strategies is explained by a limited understanding of the defects in podocyte cell biology leading to FSGS. To date, most studies in the field have focused on protein-coding genes and their gene products. However, more than 80% of all transcripts produced by mammalian cells are actually non-coding. Here, long non-coding RNAs (lncRNAs) are a relatively novel class of transcripts and have not been systematically studied in FSGS to date. The appropriate tools to facilitate lncRNA research for the renal scientific community are urgently required due to a row of challenges compared to classical analysis pipelines optimized for coding RNA expression analysis. Here, we present the bioinformatic pipeline CALINCA as a solution for this problem. CALINCA automatically analyzes datasets from murine FSGS models and quantifies both annotated and de novo assembled lncRNAs. In addition, the tool provides in-depth information on podocyte specificity of these lncRNAs, as well as evolutionary conservation and expression in human datasets making this pipeline a crucial basis to lncRNA studies in FSGS.


Sign in / Sign up

Export Citation Format

Share Document