scholarly journals Acylation Modification ofAntheraea pernyiSilk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiufang Li ◽  
Ceng Zhang ◽  
Lingshuang Wang ◽  
Caili Ma ◽  
Weichao Yang ◽  
...  

The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study,Antheraea pernyisilk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR.In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of theβ-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Zuwei Luo ◽  
Qin Zhang ◽  
Meijing Shi ◽  
Yang Zhang ◽  
Wei Tao ◽  
...  

Controlling the degradation rate of silk fibroin-based biomaterial is an important capability for the fabrication of silk-based tissue engineering scaffolds. In this study, scaffolds with different pore sizes were prepared by controlling the freezing temperature and the silk fibroin concentration.In vitrodegradation results showed that the internal pore walls of the scaffolds with a larger pore size collapsed upon exposure to collagenase IA for times ranging from 6 to 12 days, and the silk scaffolds exhibited a faster rate of weight loss. The morphological and structural features of the silk scaffolds with a smaller pore size maintained structural integrity after incubation in the protease solution for 18 days, and the rate of weight loss was relatively slow. Scaffolds with a smaller pore size or a higher pore density degraded more slowly than scaffolds with a larger pore size or lower pore density. These results demonstrate that the pore size of silk biomaterials is crucial in controlling the degradation rate of tissue engineering scaffolds.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2008 ◽  
Vol 55-57 ◽  
pp. 685-688 ◽  
Author(s):  
J. Chamchongkaset ◽  
Sorada Kanokpanont ◽  
David L. Kaplan ◽  
Siriporn Damrongsakkul

Silk has been used commercially as biomedical sutures for decades. Recently silk fibroin, especially from Bombyx mori silkworm, has been explored for many tissue engineering applications such as bone and cartilage due to its impressive biological compatibility and mechanical properties. In Thailand, Thai native silkworms have been long cultivated. Distinct characteristics of cocoon Thai silk are its yellow color and coarse filament. There is more sericin in Thai silk than in other Bombyx mori silks. These characteristics provide Thai silk a unique texture for textile industry. It is therefore the aim of this study to develop three-dimensional silk fibroin-based scaffolds from Thai yellow cocoon “Nangnoi-Srisaket” of Bombyx mori silkworms using salt-leaching method. To enhance the biological properties, type A gelatin, the denature form of collagen having good biocompactibility, was used to conjugate with silk fibroin scaffolds. The pore size of salt-leached silk fibroin scaffold structure represented the size of salt crystals used (600-710µm). After gelatin conjugation, gelatin was partly formed fibers inside the pores of silk fibroin scaffolds resulting in fiber-like structure with highly interconnection. Gelatin conjugation enhanced the compressive modulus of silk fibroin scaffolds by 93%. The results on in vitro culture using mouse osteoblast-like cells (MC3T3-E1) showed that gelatin conjugation could promote the cell proliferation in silk fibroin scaffolds. Moreover, the observed morphology of cells proliferated inside the scaffold after 14 days of culture showed the larger spreading area of cells on conjugated gelatin/silk fibroin scaffolds, compared to round-shaped cells on silk fibroin scaffolds. The results implied that Thai silk fibroin looked promising to be applied in tissue engineering and gelatin conjugation on Thai silk fibroin scaffolds could enhance the biological properties of scaffolds.


2008 ◽  
Vol 47-50 ◽  
pp. 1399-1402 ◽  
Author(s):  
Naznin Sultana ◽  
Min Wang

Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used to make composite scaffolds for bone tissue engineering in our previous studies. To control the degradation rate and process of composite scaffolds, PHBV was blended with poly(L-lactic acid) (PLLA), which has a much higher degradation rate than PHBV, and PHBV/PLLA blends were used as polymer matrices for composite scaffolds. Composite scaffolds based on these blends and containing nano-sized hydroxyapatite (nHA) were fabricated using an emulsion freezing / freeze-drying technique. Non-porous films of PHBV/PLLA blends were prepared using the solvent casting method. In vitro degradation tests of non-porous PHBV/PLLA blends and porous composite scaffolds were conducted by immersing samples in phosphate buffered saline (PBS) for various periods of time. It was found that the composition of polymer blends affected water uptake of films and scaffolds. For PHBV/PLLA-based scaffolds, the incorporated nHA particles also significantly increased water uptake within the initial immersion time. Both PHBV/PLLA blends and composite scaffolds underwent rapid weight losses within the first few weeks. The degradation of composite scaffolds arose from the dissolution of nHA particles and degradation of the PLLA component of polymer blends. Composite scaffolds exhibited enhanced adsorption of bovine serum albumin (BSA), a model protein, in the current study.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yadi Han ◽  
Xiaofeng Shen ◽  
Sihao Chen ◽  
Xiuhui Wang ◽  
Juan Du ◽  
...  

The challenge of effectively regenerating bone tissue through tissue engineering technology is that most tissue engineering scaffolds cannot imitate the three-dimensional structure and function of the natural extracellular matrix. Herein, we have prepared the poly(L-lactic acid)–based dual bioactive component reinforced nanofiber mats which were named as poly(L-lactic acid)/bovine serum albumin/nanohydroxyapatite (PLLA/BSA/nHAp) with dual bioactive components by combining homogeneous blending and electrospinning technology. The results showed that these nanofiber mats had sufficient mechanical properties and a porous structure suitable for cell growth and migration. Furthermore, the results of cell experiments in vitro showed that PLLA/BSA/nHAp composite nanofiber mat could preferably stimulate the proliferation of mouse osteoblastic cells (MC3T3 cells) compared with pure PLLA nanofiber mats. Based on these results, the scaffolds developed in this study are considered to have a great potential to be adhibited as bone repair materials.


2017 ◽  
Vol 5 (2) ◽  
pp. 329-340 ◽  
Author(s):  
Ruixue Yin ◽  
Nan Zhang ◽  
Kemin Wang ◽  
Hongyu Long ◽  
Tianlong Xing ◽  
...  

A PLA/o-nitrobenzyl based scaffold was designed and fabricated by 3D fiber deposition to demonstrate the feasibility of photo-regulated hydrolytic degradation in vitro. It promises to approach the matched degradation with new tissues when applied in tissue engineering.


2017 ◽  
Vol 757 ◽  
pp. 46-51 ◽  
Author(s):  
Patcharakamon Nooeaid ◽  
Piyachat Chuysinuan ◽  
Supanna Techasakul ◽  
Kriengsak Lirdprapamongkol ◽  
Jisnuson Svasti

Three-dimensional (3D) porous alginate/soy protein isolated (Alg/SPI) tissue engineering scaffolds were achieved by freeze-drying. The physico-chemical attributes of the scaffolds including morphology, chemical structure, mechanical properties and in vitro cytotoxicity were investigated for different SPI blends. Results indicated that increasing SPI content to 40 wt% in the blends resulted in the partial existence of closed pores and reduced pore size. The mechanical values of the scaffolds under compression also reduced with increasing SPI in the blends. The addition of SPI did not significantly enhance the cell viability of the scaffolds investigated for in vitro culture with human fibroblasts, which remained in the high (90 – 100%) range. Results demonstrated that Alg/SPI scaffolds have potential for use as tissue engineering scaffolds.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Sun ◽  
Tareef Hayat Khan ◽  
Naznin Sultana

Composite scaffolds based on biodegradable natural polymer and osteoconductive hydroxyapatite (HA) nanoparticles can be promising for a variety of tissue engineering (TE) applications. This study addressed the fabrication of three-dimensional (3D) porous composite scaffolds composed of HA and chitosan fabricated via thermally induced phase separation and freeze-drying technique. The scaffolds produced were subsequently characterized in terms of microstructure, porosity, and mechanical property.In vitrodegradation andin vitrobiological evaluation were also investigated. The scaffolds were highly porous and had interconnected pore structures. The pore sizes ranged from several microns to a few hundred microns. The incorporated HA nanoparticles were well mixed and physically coexisted with chitosan in composite scaffold structures. The addition of 10% (w/w) HA nanoparticles to chitosan enhanced the compressive mechanical properties of composite scaffold compared to pure chitosan scaffold.In vitrodegradation results in phosphate buffered saline (PBS) showed slower uptake properties of composite scaffolds. Moreover, the scaffolds showed positive response to mouse fibroblast L929 cells attachment. Overall, the findings suggest that HA/chitosan composite scaffolds could be suitable for TE applications.


Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


Sign in / Sign up

Export Citation Format

Share Document