scholarly journals The Attenuated Protective Effect of Outer Membrane Vesicles Produced by a mcr-1 Positive Strain on Colistin Sensitive Escherichia coli

Author(s):  
Xue Li ◽  
Lang Sun ◽  
Congran Li ◽  
Xinyi Yang ◽  
Xiukun Wang ◽  
...  

Resistance to colistin, especially mobilized colistin resistance (mcr), is a serious threat to public health since it may catalyze a return of the “pre-antibiotic era”. Outer membrane vesicles (OMVs) play a role in antibiotic resistance in various ways. Currently, how OMVs participate in mcr-1-mediated colistin resistance has not been established. In this study, we showed that both OMVs from the mcr-1 negative and positive Escherichia coli (E. coli) strains conferred dose-dependent protection from colistin. However, OMVs from the mcr-1 positive strain conferred attenuated protection when compared to the OMVs of a mcr-1 negative strain at the same concentration. The attenuated protective effect of OMVs was related to the reduced ability to absorb colistin from the environment, thus promoting the killing of colistin sensitive E. coli strains. Lipid A modified with phosphoethanolamine was presented in the OMVs of the mcr-1 positive E. coli strain and resulted in decreased affinity to colistin and less protection. Meanwhile, E. coli strain carrying the mcr-1 gene packed more unmodified lipid A in OMVs and kept more phosphoethanolamine modified lipid A in the bacterial cells. Our study provides a first glimpse of the role of OMVs in mcr-1 -mediated colistin resistance.

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Andreas Bauwens ◽  
Lisa Kunsmann ◽  
Helge Karch ◽  
Alexander Mellmann ◽  
Martina Bielaszewska

ABSTRACT Ciprofloxacin, meropenem, fosfomycin, and polymyxin B strongly increase production of outer membrane vesicles (OMVs) in Escherichia coli O104:H4 and O157:H7. Ciprofloxacin also upregulates OMV-associated Shiga toxin 2a, the major virulence factor of these pathogens, whereas the other antibiotics increase OMV production without the toxin. These two effects might worsen the clinical outcome of infections caused by Shiga toxin-producing E. coli. Our data support the existing recommendations to avoid antibiotics for treatment of these infections.


2006 ◽  
Vol 189 (5) ◽  
pp. 1627-1632 ◽  
Author(s):  
Maria D. Bodero ◽  
M. Carolina Pilonieta ◽  
George P. Munson

ABSTRACT The expression of the inner membrane protein NlpA is repressed by the enterotoxigenic Escherichia coli (ETEC) virulence regulator Rns, a member of the AraC/XylS family. The Rns homologs CfaD from ETEC and AggR from enteroaggregative E. coli also repress expression of nlpA. In vitro DNase I and potassium permanganate footprinting revealed that Rns binds to a site overlapping the start codon of nlpA, preventing RNA polymerase from forming an open complex at nlpAp. A second Rns binding site between positions −152 and −195 relative to the nlpA transcription start site is not required for repression. NlpA is not essential for growth of E. coli under laboratory conditions, but it does contribute to the biogenesis of outer membrane vesicles. As outer membrane vesicles have been shown to contain ETEC heat-labile toxin, the repression of nlpA may be an indirect mechanism through which the virulence regulators Rns and CfaD limit the release of toxin.


2015 ◽  
Vol 81 (17) ◽  
pp. 5900-5906 ◽  
Author(s):  
Yoshihiro Ojima ◽  
Minh Hong Nguyen ◽  
Reiki Yajima ◽  
Masahito Taya

ABSTRACTMicrobial flocculation is a phenomenon of aggregation of dispersed bacterial cells in the form of flocs or flakes. In this study, the mechanism of spontaneous flocculation ofEscherichia colicells by overexpression of thebcsBgene was investigated. The flocculation induced by overexpression ofbcsBwas consistent among the variousE. colistrains examined, including the K-12, B, and O strains, with flocs that resembled paper scraps in structure being about 1 to 2 mm. The distribution of green fluorescent protein-labeledE. colicells within the floc structure was investigated by three-dimensional confocal laser scanning microscopy. Flocs were sensitive to proteinase K, indicating that the main component of the flocs was proteinous. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nano-liquid chromatography tandem mass spectrometry analyses of the flocs strongly suggested the involvement of outer membrane vesicles (OMVs) inE. coliflocculation. The involvement of OMVs in flocculation was supported by transmission electron microscopy observation of flocs. Furthermore,bcsB-inducedE. coliflocculation was greatly suppressed in strains with hypovesiculation phenotypes (ΔdsbAand ΔdsbBstrains). Thus, our results demonstrate the strong correlation between spontaneous flocculation and enhanced OMV production ofE. colicells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yoshihiro Ojima ◽  
Tomomi Sawabe ◽  
Mao Nakagawa ◽  
Yuhei O. Tahara ◽  
Makoto Miyata ◽  
...  

Escherichia coli produces extracellular vesicles called outer membrane vesicles (OMVs) by releasing a part of its outer membrane. We previously reported that the combined deletion of nlpI and mlaE, related to envelope structure and phospholipid accumulation in the outer leaflet of the outer membrane, respectively, resulted in the synergistic increase of OMV production. In this study, the analysis of ΔmlaEΔnlpI cells using quick-freeze, deep-etch electron microscopy (QFDE-EM) revealed that plasmolysis occurred at the tip of the long axis in cells and that OMVs formed from this tip. Plasmolysis was also observed in the single-gene knockout mutants ΔnlpI and ΔmlaE. This study has demonstrated that plasmolysis was induced in the hypervesiculating mutant E. coli cells. Furthermore, intracellular vesicles and multilamellar OMV were observed in the ΔmlaEΔnlpI cells. Meanwhile, the secretion of recombinant green fluorescent protein (GFP) expressed in the cytosol of the ΔmlaEΔnlpI cells was more than 100 times higher than that of WT and ΔnlpI, and about 50 times higher than that of ΔmlaE in the OMV fraction, suggesting that cytosolic components were incorporated into outer-inner membrane vesicles (OIMVs) and released into the extracellular space. Additionally, QFDE-EM analysis revealed that ΔmlaEΔnlpI sacculi contained many holes noticeably larger than the mean radius of the peptidoglycan (PG) pores in wild-type (WT) E. coli. These results suggest that in ΔmlaEΔnlpI cells, cytoplasmic membrane materials protrude into the periplasmic space through the peptidoglycan holes and are released as OIMVs.


2021 ◽  
Author(s):  
Laure DAVID ◽  
Frederic Taieb ◽  
Marie Penary ◽  
Pierre-Jean Bordignon ◽  
Remy Planes ◽  
...  

Escherichia coli (E. coli) strains are responsible for a majority of human extra-intestinal infections, resulting in huge medical, economic and social costs. We had previously shown that HlyF encoded by a large virulence plasmid harbored by pathogenic E. coli is not a hemolysin but a cytoplasmic enzyme leading to the overproduction of outer membrane vesicles (OMVs). Here, we show that these specific OMVs inhibit the autophagic flux by impairing the autophagosome − lysosome fusion, thus preventing the formation of acidic autolysosome and autophagosome clearance. Furthermore, OMVs from E. coli producing HlyF are much more prone to activate the non-canonical inflammasome pathway. Since autophagy and inflammation are crucial in the host′s response to infection especially during sepsis, our findings reveal an unsuspected role of OMVs in the crosstalk between bacteria and their host, highlighting the fact that these extracellular vesicles have exacerbated pathogenic properties compared to OMVs produced by isogenic strains unable to produce a functional HlyF.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Ilaria Zanella ◽  
Enrico König ◽  
Michele Tomasi ◽  
Assunta Gagliardi ◽  
Luca Frattini ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1661
Author(s):  
Mei-Hsiu Chen ◽  
Tse-Ying Liu ◽  
Yu-Chiao Chen ◽  
Ming-Hong Chen

Glioblastoma, formerly known as glioblastoma multiforme (GBM), is refractory to existing adjuvant chemotherapy and radiotherapy. We successfully synthesized a complex, Au–OMV, with two specific nanoparticles: gold nanoparticles (AuNPs) and outer-membrane vesicles (OMVs) from E. coli. Au–OMV, when combined with radiotherapy, produced radiosensitizing and immuno-modulatory effects that successfully suppressed tumor growth in both subcutaneous G261 tumor-bearing and in situ (brain) tumor-bearing C57BL/6 mice. Longer survival was also noted with in situ tumor-bearing mice treated with Au–OMV and radiotherapy. The mechanisms for the successful treatment were evaluated. Intracellular reactive oxygen species (ROS) greatly increased in response to Au–OMV in combination with radiotherapy in G261 glioma cells. Furthermore, with a co-culture of G261 glioma cells and RAW 264.7 macrophages, we found that GL261 cell viability was related to chemotaxis of macrophages and TNF-α production.


2017 ◽  
Vol 474 (8) ◽  
pp. 1395-1416 ◽  
Author(s):  
Cora Lilia Alvarez ◽  
Gerardo Corradi ◽  
Natalia Lauri ◽  
Irene Marginedas-Freixa ◽  
María Florencia Leal Denis ◽  
...  

We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1–1 µM). Exposure to MST7 and MEL enhanced ATP release by 3–7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6–7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.


Sign in / Sign up

Export Citation Format

Share Document