scholarly journals Climate Change in Rwanda: The Observed Changes in Daily Maximum and Minimum Surface Air Temperatures during 1961–2014

2021 ◽  
Vol 9 ◽  
Author(s):  
Jean Paul Ngarukiyimana ◽  
Yunfei Fu ◽  
Celestin Sindikubwabo ◽  
Idrissa Fabien Nkurunziza ◽  
Faustin Katchele Ogou ◽  
...  

Rwanda has experienced high temperature rising phenomena over the last decades and hence, highly vulnerable to climate change. This paper examined the spatial and temporal variations of daily maximum and minimum surface air temperature (Tmin and Tmax) and diurnal temperature range (DTR). It studied variables at monthly, seasonal and annual time-scales from 1961 to 2014. The study applied various statistical methods such as ordinary least-square fitting, Mann-Kendall, Sen’ slope and Sequential Mann-Kendall statistical test to the new reconstructed ENACTS dataset that cover the period from 1983 to 2014 while pre-1983s recorded data from 24 meteorological stations have been added to complete the lengthiness of ENACTS data. The January to February season did not show a significant trend at seasonal time-scales. The authors decided only to consider March-to-May, June-to-August and October-to-December seasons for further analyses. Topography impacts on temperature classified stations into three regions: region one (R1) (1,000–1,500 m), region two (R2) (1,500–2,000 m) and region three (R3) (≥2,000 m). With high confidence, the results indicate a significant positive trend in both Tmin and Tmax in all three regions during the whole study period. However, the magnitude rate of temperatures change is different in three regions and it varies in seasonal and annual scale. The spatial distributions of Tmax and Tmin represent a siginificant warming trend over the whole country notably since the early 1980s. Surprisingly, Tmin increased at a faster rate than Tmax in R3 (0.27 vs. 0.07°C/decade in March-to-May) and (0.29 vs. 0.04°C/decade in October-to-December), resulting in a significant decrease in the DTR. This is another confirmation of warming in Rwanda. The mutation test application exhibited most of the abrupt changes in the seasonal and annual Tmax and Tmin trends between 1984 and 1990. The present work mainly focus on the spatial and temporal variability of Tmin, Tmax and DTR in Rwanda and their relationship with elevation change, leaving a gap in other potential cause factors explored in the future.

2018 ◽  
Vol 31 (11) ◽  
pp. 4585-4603 ◽  
Author(s):  
Jizeng Du ◽  
Kaicun Wang ◽  
Jiankai Wang ◽  
Shaojing Jiang ◽  
Chunlüe Zhou

Abstract Diurnal cycle of surface air temperature T is an important metric indicating the feedback of land–atmospheric interaction to global warming, whereas the ability of current reanalyses to reproduce its variation had not been assessed adequately. Here, we evaluate the daily maximum temperature Tmax, daily minimum temperature Tmin, and diurnal temperature range (DTR) in five reanalyses based on observations collected at 2253 weather stations over China. Our results show that the reanalyses reproduce Tmin very well; however, except for Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2), they substantially underestimate Tmax and DTR by 1.21°–6.84°C over China during the period of 1980–2014. MERRA-2 overestimates Tmax and DTR by 0.35° and 0.81°C, which are closest with observation. The reanalyses are skillful in reproducing the interannual variability of Tmax and Tmin but relatively poor for DTR. All reanalyses underestimate the warming trend of Tmin by 0.13°–0.17°C (10 yr)−1 throughout China during 1980–2014, and underestimate the warming trend of Tmax by 0.24°–0.40°C (10 yr)−1 in northwestern China while overestimating this quantity by 0.18°–0.33°C (10 yr)−1 in southeastern China. These trend biases in Tmax and Tmin introduce a positive trend bias in DTR of 0.01°–0.26°C (10 yr)−1 within China, especially in the north China plain and southeastern China. In the five reanalyses, owing to the sensitivity discrepancies and trend biases, the surface solar radiation Rs and precipitation frequency (PF) are notable deviation sources of the diurnal cycle of air temperature, which explain 31.0%–38.7% (31.9%–37.8%) and 9.8%–22.2% (7.4%–15.3%) of the trend bias in Tmax (DTR) over China, respectively.


2011 ◽  
Vol 24 (20) ◽  
pp. 5292-5302 ◽  
Author(s):  
Cheng Qian ◽  
Congbin Fu ◽  
Zhaohua Wu

Abstract Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. In this study, the ensemble empirical mode decomposition (EEMD) method is applied to investigate the nonlinear trend in the amplitude of the annual cycle (which contributes 96% of the total variance) of China’s daily mean surface air temperature for the period 1961–2007. The results show that the variation and change in the amplitude are significant, with a peak-to-peak annual amplitude variation of 13% (1.8°C) of its mean amplitude and a significant linear decrease in amplitude by 4.6% (0.63°C) for this period. Also identified is a multidecadal change in amplitude from significant decreasing (−1.7% decade−1 or −0.23°C decade−1) to significant increasing (2.2% decade−1 or 0.29°C decade−1) occurring around 1993 that overlaps the systematic linear trend. This multidecadal change can be mainly attributed to the change in surface solar radiation, from dimming to brightening, rather than to a warming trend or an enhanced greenhouse effect. The study further proposes that the combined effect of the global dimming–brightening transition and a gradual increase in greenhouse warming has led to a perceived warming trend that is much larger in winter than in summer and to a perceived accelerated warming in the annual mean since the early 1990s in China. It also notes that the deseasonalization method (considering either the conventional repetitive climatological annual cycle or the time-varying annual cycle) can also affect trend estimation.


Author(s):  
Hojjatollah Yazdanpanah ◽  
Josef Eitzinger ◽  
Marina Baldi

Purpose The purpose of this paper is to assess the spatial and temporal variations of extreme hot days (H*) and heat wave frequencies across Iran. Design/methodology/approach The authors used daily maximum temperature (Tmax) data of 27 synoptic stations in Iran. These data were standardized using the mean and the standard deviation of each day of the year. An extreme hot day was defined when the Z score of daily maximum temperature of that day was equal or more than a given threshold fixed at 1.7, while a heat wave event was considered to occur when the Z score exceeds the threshold for at least three continuous days. According to these criteria, the annual frequency of extreme hot days and the number of heat waves were determined for all stations. Findings The trend analysis of H* shows a positive trend during the past two decades in Iran, with the maximum number of H* (110 cases) observed in 2010. A significant trend of the number of heat waves per year was also detected during 1991-2013 in all the stations. Overall, results indicate that Iran has experienced heat waves in recent years more often than its long-term average. There will be more frequent and intense hot days and heat waves across Iran until 2050, due to estimated increase of mean air temperature between 0.5-1.1 and 0.8-1.6 degree centigrade for Rcp2.6 and Rcp8.8 scenarios, respectively. Originality/value The trend analysis of hot days and heat wave frequencies is a particularly original aspect of this paper. It is very important for policy- and decision-makers especially in agriculture and health sectors of Iran to make some adaptation strategies for future frequent and intense hot days over Iran.


2019 ◽  
pp. 31-44
Author(s):  
J. Srinivasan

India’s high population density, large spatial and temporal variability in rainfall, and high poverty rates make it particularly vulnerable to the impacts of climate change. This chapter provides a baseline of knowledge on evidence and impacts. More frequent episodes of extreme rainfall, longer dry spells, higher sea levels, and heat waves are expected. This will have unpredictable impacts on agriculture and public health. There has been an increase in the national mean surface air temperature and the number of hot days, significant regional variations in rainfall patterns, measurable melting of Himalayan glaciers, and a rise in sea level on both the coasts of the country. High levels of air pollution could exacerbate changes in rainfall patterns. India will need better climate models to predict impacts by state and region, a prerequisite for informed adaptation policy.


2013 ◽  
Vol 26 (23) ◽  
pp. 9399-9407 ◽  
Author(s):  
Simon Borlace ◽  
Wenju Cai ◽  
Agus Santoso

The amplitude of the El Niño–Southern Oscillation (ENSO) can vary naturally over multidecadal time scales and can be influenced by climate change. However, determining the mechanism for this variation is difficult because of the paucity of observations over such long time scales. Using a 1000-yr integration of a coupled global climate model and a linear stability analysis, it is demonstrated that multidecadal modulation of ENSO amplitude can be driven by variations in the governing dynamics. In this model, the modulation is controlled by the underlying thermocline feedback mechanism, which in turn is governed by the response of the oceanic thermocline slope across the equatorial Pacific to changes in the overlying basinwide zonal winds. Furthermore, the episodic strengthening and weakening of this coupled interaction is shown to be linked to the slowly varying background climate. In comparison with the model statistics, the recent change of ENSO amplitude in observations appears to be still within the range of natural variability. This is despite the apparent warming trend in the mean climate. Hence, this study suggests that it may be difficult to infer a climate change signal from changes in ENSO amplitude alone, particularly given the presently limited observational data.


2019 ◽  
Vol 8 (2) ◽  
pp. 68
Author(s):  
M. Kouressy ◽  
B. Sultan ◽  
M. Vaksmann ◽  
J. F. Belières ◽  
L. Claessens ◽  
...  

Mali is a Sahelian country with a large climatic contrast from North to South. The current climatic and production evolutionary study is focused on the six major agro-climatic cereal production zones ranging from Kayes (400 mm) to Sikasso (>1000 mm) of rainfalls. Climatic data are rainfall records, daily maximum and minimum temperatures from 60 years of the six major synoptic weather observation stations. Data were analyzed on comparing average decades of the two normal periods of 30 years (1951-1980) and (1981-2010). Annual agronomic production data for millet, sorghum, maize and rice are derived from Mali's agricultural statistics base from 1984 to 2013. Main climatic results analyses indicate that climate change resulted in a decrease of 100 mm isohyets between the 2 periods of 30 years. The structure of the rainy season was little changed between these two periods since the average start of the season was delayed by 6 days and the average end date of the season became earlier by 4 days. Maximum temperatures increased significantly from + 0.44°C to + 1.53°C and minimum temperatures significantly increased from + 1.05°C to + 1.93°C in varying way depending on the sites. Statistics of major agronomic food crop production in Mali from 1984 to 2013 indicate an average increase of 985 to 4492 thousand tones, or 22% increase per year. There is a positive upward in saw tooth trend in Malian production from 1984 to 2013. This positive trend is the result of a combination of agricultural extension, agronomic research application and the management of small farmer holder in the Sahel. This evolution needs better study for drawing necessary right conclusions.


2021 ◽  
Author(s):  
Raju Kalita ◽  
Dipangkar Kalita ◽  
Atul Saxena

Abstract We have used Mann-Kendall trend test and Sen’s slope estimator method to find out significant changes in extreme climate indices for daily temperature as well as precipitation over the period 1979 to 2020 in Cherrapunji. In the present study, a total of 24 precipitation and temperature based extreme climate indices were calculated using RClimDex v 1.9-3. Among 24 indices, 7 were derived from number of days above nn mm rainfall (Rnn) according to Indian Meteorological Department (IMD) convention and the rest were in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). It was observed that, among all the indices, consecutive dry days (CDD), summer days (SU25) and very light rainfall (VLR) days increased significantly with 0.54, 1.58 and 0.14 days/year respectively, while only consecutive wet days (CWD) decreased significantly with 0.36 days/year. A slight negative trend was also observed in case of tropical nights (TR20) and among the other precipitation indices as well. Again, the indices associated with daily maximum temperature increased significantly with annual change of 0.06 to 0.07 ⁰C/year. And for indices associated with daily minimum temperature, almost no change or a slight negative change was observed, except a significant positive trend in February and significant negative trend in November for TNN only. The analysis reveals that some of the extreme climate indices which explains the climatic conditions of Cherrapunji has changed a lot over the period of 42 years and if this trend continues then Cherrapunji will be under threat when it comes to climate change.


2015 ◽  
Vol 15 (16) ◽  
pp. 22975-23004 ◽  
Author(s):  
X. Guan ◽  
J. Huang ◽  
R. Guo ◽  
P. Lin ◽  
Y. Zhang

Abstract. As the climate change occurred over East Asia since 1950s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. In this study, we investigate surface temperature change using a recently developed methodology that can successfully identify and separate the dynamically induced temperature (DIT) and radiatively forced temperature (RFT) changes in raw surface air temperature (SAT) data. For regional averages, DIT and RFT make 43.7 and 56.3 % contributions to the SAT over East Asia, respectively. The DIT changes dominate the SAT decadal variability and are mainly determined by internal climate variability, such as the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). The radiatively forced SAT changes made major contribution to the global-scale warming trend and the regional-scale enhanced semi-arid warming (ESAW). Such enhanced warming is also found in radiatively forced daily maximum and minimum SAT. The long-term global-mean SAT warming trend is mainly related to radiative forcing produced by global well-mixed greenhouse gases. The regional anthropogenic radiative forcing, however, caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities. Finally, the relationship between global warming hiatus and regional enhanced warming is discussed.


2021 ◽  
Author(s):  
Peng Si ◽  
Qingxiang Li ◽  
Phil Jones

Abstract. The century-long continuous daily observations from some stations are important for the study of long-term trends and extreme climate events in the past. In this paper, three daily data sources: (1) Department of Industry Agency of British Concession in Tianjin covering Sep 1 1890–Dec 31 1931 (2) Water Conservancy Commission of North China covering Jan 1 1932–Dec 31 1950 and (3) monthly journal sheets for Tianjin surface meteorological observation records covering Jan 1 1951–Dec 31 2019 have been collected from the Tianjin Meteorological Archive. The completed daily maximum and minimum temperature series for Tianjin from Jan 1 1887 (Sep 1 1890 for minimum) to Dec 31 2019 has been constructed and assessed for quality control and an early extension from 1890 to 1887. Several significant breakpoints are detected by the Penalized Maximal T-test (PMT) for the daily maximum and minimum time series using multiple reference series around Tianjin from monthly Berkeley Earth, CRUTS4.03 and GHCNV3 data. Using neighboring daily series the record has been homogenized with Quantile Matching (QM) adjustments. Based on the homogenized dataset, the warming trend in annual mean temperature in Tianjin averaged from the newly constructed daily maximum and minimum temperature is evaluated as 0.154 ± 0.013 °C decade-1 during the last 130 years. Trends of temperature extremes in Tianjin are all significant at the 5 % level, and have much more coincident change than those from the raw, with amplitudes of −1.454 d decade−1, 1.196 d decade−1, −0.140 d decade−1 and 0.975 d decade−1 for cold nights (TN10p), warm nights (TN90p), cold days (TX10p) and warm days (TX90p) at the annual scale. The adjusted daily maximum, minimum and mean surface air temperature dataset for Tianjin city presented here is publicly available at https://doi.pangaea.de/10.1594/PANGAEA.924561 (Si and Li, 2020).


2007 ◽  
Vol 362 (1488) ◽  
pp. 2307-2331 ◽  
Author(s):  
Steven L Chown ◽  
Peter Convey

Antarctica and its surrounding islands lie at one extreme of global variation in diversity. Typically, these regions are characterized as being species poor and having simple food webs. Here, we show that terrestrial systems in the region are nonetheless characterized by substantial spatial and temporal variations at virtually all of the levels of the genealogical and ecological hierarchies which have been thoroughly investigated. Spatial variation at the individual and population levels has been documented in a variety of genetic studies, and in mosses it appears that UV-B radiation might be responsible for within-clump mutagenesis. At the species level, modern molecular methods have revealed considerable endemism of the Antarctic biota, questioning ideas that small organisms are likely to be ubiquitous and the taxa to which they belong species poor. At the biogeographic level, much of the relatively small ice-free area of Antarctica remains unsurveyed making analyses difficult. Nonetheless, it is clear that a major biogeographic discontinuity separates the Antarctic Peninsula and continental Antarctica, here named the ‘Gressitt Line’. Across the Southern Ocean islands, patterns are clearer, and energy availability is an important correlate of indigenous and exotic species richness, while human visitor numbers explain much of the variation in the latter too. Temporal variation at the individual level has much to do with phenotypic plasticity, and considerable life-history and physiological plasticity seems to be a characteristic of Antarctic terrestrial species. Environmental unpredictability is an important driver of this trait and has significantly influenced life histories across the region and probably throughout much of the temperate Southern Hemisphere. Rapid climate change-related alterations in the range and abundance of several Antarctic and sub-Antarctic populations have taken place over the past several decades. In many sub-Antarctic locations, these have been exacerbated by direct and indirect effects of invasive alien species. Interactions between climate change and invasion seem set to become one of the most significant conservation problems in the Antarctic. We conclude that despite the substantial body of work on the terrestrial biodiversity of the Antarctic, investigations of interactions between hierarchical levels remain scarce. Moreover, little of the available information is being integrated into terrestrial conservation planning, which lags far behind in this region by comparison with most others.


Sign in / Sign up

Export Citation Format

Share Document