scholarly journals Evaluation of Forecast Performance for Four Meteorological Models in Summer Over Northwestern China

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuanpu Liu ◽  
Tiejun Zhang ◽  
Haixia Duan ◽  
Jing Wu ◽  
Dingwen Zeng ◽  
...  

At present, numerical models, which have been used for forecasting services in northwestern China, have not been extensively evaluated. We used national automatic ground station data from summer 2016 to test and assess the forecast performance of the high-resolution global European Centre for Medium-Range Weather Forecast (ECMWF) model, the mesoscale Northwestern Mesoscale Numerical Prediction System (NW-MNPS), the global China Meteorological Administration T639 model, and the mesoscale Global/Regional Assimilation and Prediction System (GRAPES) model over northwestern China. The root mean square error (RMSE) of the 2-m temperature forecast by ECMWF was the lowest, while that by T639 was the highest. The distribution of RMSE for each model forecast was similar to that of the difference between the modeled and observed terrain. The RMSE of the 10-m wind speed forecast was lower for the global ECMWF and T639 models and higher for the regional NW-MNPS and GRAPES models. The 24-h precipitation forecast was generally higher than observed for each model, with NW-MNPS having the highest score for light rain and heavy storm rain, ECMWF for medium and heavy rain, and T639 for storm rain. None of the models could forecast small-scale and high-intensity precipitation, but they could forecast large-scale precipitation. Overall, ECMWF had the best stability and smallest prediction errors, followed by NW-MNPS, T639, and GRAPES.

2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2020 ◽  
Vol 104 (2) ◽  
pp. 1581-1596
Author(s):  
Thomas Heinze

Abstract Dynamics of snow avalanches or landslides can be described by rapid granular flow. Experimental investigations of granular flow at laboratory scale are often required to analyze flow behaviour and to develop adequate mathematical and numerical models. Most investigations use image-based analysis, and additional sensors such as pressure gauges are not always possible. Testing various scenarios and parameter variations such as different obstacle shapes and positions as well as basal topography and friction usually requires either the construction of a new laboratory setups for each test or a cumbersome reconstruction. In this work, a highly flexible and modular laboratory setup is presented based on LEGO bricks. The flexibility of the model is demonstrated, and possible extensions for future laboratory tests are outlined. The setup is able to reproduce published laboratory experiments addressing current scientific research topics, such as overflow of a rigid reflector, flow on a bumpy surface and against a rigid wall using standard image-based analysis. This makes the setup applicable for quick scenario testing, e.g. for hypothesis testing or for low-cost testing prior to large-scale experiments, and it can contribute to the validation of external results and to benchmarks of numerical models. Small-scale laboratory setups are also very useful for demonstration purposes such as education and public outreach, both crucial in the context of natural hazards. The presented setup enables variation of parameters such as of slope length, channel width, height and shape, inclination, bed friction, obstacle position and shape, as well as density, composition, amount and grain size of flowing mass. Observable quantities are flow type, flow height, flow path and flow velocity, as well as runout distance, size and shape of the deposited material. Additional sensors allow further quantitative assessments, such as local pressure values.


Author(s):  
Matthias Rempel

Sunspots are central to our understanding of solar (and stellar) magnetism in many respects. On the large scale, they link the magnetic field observable in the photosphere to the dynamo processes operating in the solar interior. Properly interpreting the constraints that sunspots impose on the dynamo process requires a detailed understanding of the processes involved in their formation, dynamical evolution and decay. On the small scale, they give an insight into how convective energy transport interacts with the magnetic field over a wide range of field strengths and inclination angles, leading to sunspot fine structure observed in the form of umbral dots and penumbral filaments. Over the past decade, substantial progress has been made on both observational and theoretical sides. Advanced ground- and space-based observations have resolved, for the first time, the details of umbral dots and penumbral filaments and discovered similarities in their substructures. Numerical models have advanced to the degree that simulations of entire sunspots with sufficient resolution to resolve sunspot fine structure are feasible. A combination of improved helioseismic inversion techniques with seismic forward modelling provides new views on the subsurface structure of sunspots. In this review, we summarize recent progress, with particular focus on numerical modelling.


2012 ◽  
Vol 8 (S294) ◽  
pp. 225-236
Author(s):  
M. Hanasz ◽  
D. Woltanski ◽  
K. Kowalik

AbstractWe review recent developments of amplification models of galactic and intergalactic magnetic field. The most popular scenarios involve variety of physical mechanisms, including turbulence generation on a wide range of physical scales, effects of supernovae, buoyancy as well as the magnetorotational instability. Other models rely on galaxy interaction, which generate galactic and intergalactic magnetic fields during galaxy mergers. We present also global galactic-scale numerical models of the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker (1992). We conduct a series of direct CR+MHD numerical simulations of the dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and CR components. We take into account CRs accelerated in randomly distributed supernova (SN) remnants, and assume that SNe deposit small-scale, randomly oriented, dipolar magnetic fields into the ISM. The amplification timescale of the large-scale magnetic field resulting from the CR-driven dynamo is comparable to the galactic rotation period. The process efficiently converts small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields. The resulting magnetic field structure resembles the X-shaped magnetic fields observed in edge-on galaxies.


2021 ◽  
Author(s):  
Ariel Tremayne Thomas ◽  
Jan von Harten ◽  
Tomi Adriansyah Jusri ◽  
Sönke Reiche ◽  
Florian Wellmann

Abstract Continental shelves around the globe are hosts to vast reservoirs of offshore freshened groundwater. These systems show considerable complexity, often as a function of the geological heterogeneity. Data needed to characterise these systems are often sparse, and numerical models rely on generalized simplifications of the geological environment. In order to improve our understanding of these systems, it is necessary to implement modeling approaches that can produce large-scale geologically representative models using sparse data. We present an interdisciplinary stochastic modeling workflow incorporating borehole data, 2D depth-migrated seismic profiles, seismic attributes, and prior knowledge of the depositional setting. We generate a conditioned Gaussian field of porosity on the New Jersey shelf. We also perform a petrophysical conversion to a corresponding permeability distribution. The model dimensions are 134 km x 69 km x 1.7 km, with an adjustable resolution that can be adapted for process-based models of flow and solute transport. The integrated approach successfully translates small-scale porosity variations to a shelf-scale model that honors key characteristics of the New Jersey shelf wave-dominated depositional environment. The model was generated using open-source packages. All data and code to reproduce the complete workflow are provided along with this study so the model can be reproduced at any resolution for further studies of continental shelf processes offshore New Jersey.


Author(s):  
Judith Herold ◽  
Eric Lemont ◽  
Stuart Bettington ◽  
Edward Couriel

The development and calibration of coastal numerical models to support engineering design and environmental impact studies is a challenging process and one that requires professional judgement and continual assessment of all aspects of the model makeup. Fundamental to the integrity of the model are appropriate boundary conditions and quality observational data for calibration. Open ocean boundary conditions are typically the most complex and important aspect of a model build. They represent the influence of dynamics occurring beyond the model extent, bridging large-scale dynamics to the small-scale processes in the model. This study discusses the challenges of open ocean boundaries and how we utilised data to achieve an effective model.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/evL7f_17wZg


Author(s):  
Pavel A. Perezhogin ◽  
Andrey V. Glazunov ◽  
Evgeny V. Mortikov ◽  
Valentin P. Dymnikov

AbstractThe influence of numerical approximations on statistical characteristics of modelled two-dimensional turbulence sustained by a stochastic external forcing is studied. The ability of various finite-difference and semi-Lagrangian schemes to reproduce reliably the dual energy and enstrophy cascades for coarse spatial resolution is tested. It is also studied how the requirement of preserving invariants inherent to a two-dimensional ideal fluid is important relative to numerical schemes. The results of calculations with high spatial resolution were taken as a reference solution. The choice of studied schemes was motivated by their use in atmosphere and ocean numerical models, in particular, in the Institute of Numerical Mathematics climate model (INMCM) and semi-Lagrangian absolute vorticity (SLAV) model of medium-range weather forecast. The importance of conservation laws for integral vorticity and enstrophy is revealed in the numerical experiments with a small-scale external forcing.


2012 ◽  
Vol 8 (S294) ◽  
pp. 313-318
Author(s):  
D. Sokoloff ◽  
H. Zhang ◽  
D. Moss ◽  
N. Kleeorin ◽  
K. Kuzanyan ◽  
...  

AbstractWe investigate to what extent the current helicity distribution observed in solar active regions is compatible with solar dynamo models. We use an advanced 2D mean-field dynamo model with dynamo action largely concentrated near the bottom of the convective zone, and dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic 2D mean-field dynamo model with simple algebraic alpha quenching only. Using these numerical models we obtain butterfly diagrams for both the small-scale current helicity and the large-scale magnetic helicity, and compare them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by −A·B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are respectively the dynamo generated mean magnetic field and its vector potential.


2020 ◽  
Author(s):  
Namgu Yeo ◽  
Eun-Chul Chang ◽  
Ki-Hong Min

<p>In this study, Korea Rapid Developing Thunderstorms (K-RDT) product from geostationary meteorological satellite which represents developing stage of convective cells is nudged to the Simplified Arakawa Schubert (SAS) deep convection scheme using a simple nudging technique in order to improve prediction skill of a heavy rainfall caused by mesoscale convective system over South Korea in the short-term forecast. Impact of the K-RDT information is investigated on the Global/Regional Integrated Model system (GRIMs) regional model program (RMP) system. For the selected heavy rainfall cases, the control run without nudging and two nudging experiments with different nudging period are performed. Although the simulated precipitations in the nudging experiments tend to depend on the distribution of convective cells detected in the K-RDT algorithm, the nudging experiment shows improved precipitation forecast than the control experiment. Particularly, the experiment with nudging for longer time produces better prediction skill. The results present that the small-scale convective cells from the K-RDT which are detected with a 1-km resolution have clear impacts to large-scale atmospheric fields. Therefore, it is suggested that utilizing small-scale information of convective system in the numerical weather prediction can have critical impact to improve forecast skill when the model system, which cannot properly represent sub-grid scale convections.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 274 ◽  
Author(s):  
Fotini Chow ◽  
Christoph Schär ◽  
Nikolina Ban ◽  
Katherine Lundquist ◽  
Linda Schlemmer ◽  
...  

This review paper explores the field of mesoscale to microscale modeling over complex terrain as it traverses multiple so-called gray zones. In an attempt to bridge the gap between previous large-scale and small-scale modeling efforts, atmospheric simulations are being run at an unprecedented range of resolutions. The gray zone is the range of grid resolutions where particular features are neither subgrid nor fully resolved, but rather are partially resolved. The definition of a gray zone depends strongly on the feature being represented and its relationship to the model resolution. This paper explores three gray zones relevant to simulations over complex terrain: turbulence, convection, and topography. Taken together, these may be referred to as the gray continuum. The focus is on horizontal grid resolutions from ∼10 km to ∼10 m. In each case, the challenges are presented together with recent progress in the literature. A common theme is to address cross-scale interaction and scale-awareness in parameterization schemes. How numerical models are designed to cross these gray zones is critical to complex terrain applications in numerical weather prediction, wind resource forecasting, and regional climate modeling, among others.


Sign in / Sign up

Export Citation Format

Share Document