scholarly journals Numerical Simulation of Shale Reservoir Fluid-Driven Fracture Network Morphology Based on Global CZM

2021 ◽  
Vol 9 ◽  
Author(s):  
Yang Yang ◽  
Zixi Jiao ◽  
Longhuan Du ◽  
Hua Fan

There are a large number of natural fractures in shale reservoirs, which create great challenges to hydraulic fracturing. Activating the natural fractures in reservoirs can form a complex fracture network, enhance fracturing effects, and increase shale gas production. Reservoir geological conditions (low in situ stress, natural fracture distribution, and cement strength) and operation parameters (fracturing fluid viscosity and injection rate) have an important influence on fracture network propagation. In this article, a two-dimensional hydraulic fracturing fluid-mechanic coupling numerical model for shale reservoirs with natural fractures was established. Based on the global cohesive zone model, the influence of geological conditions and operation parameters on the propagation of the hydraulic fracture network and fracturing process is investigated. The numerical simulation results show that when the horizontal in situ stress difference, approach angle, and cement strength are low, it is easier to form a complex fracture network. Research on the construction parameters indicated that when the viscosity of the fracturing fluid is low, it is easier to form a complex network of fractures, but the length of the fractures is shorter; in contrast, the fractures are straight and long. In addition, increasing the injection rate is beneficial for increasing the complexity of the fracture network while increasing the initiation pressure and width of the principal fracture reduces the risk of sand plugging. This article also proposes an optimization solution for hydraulic fracturing operations based on numerical simulation results.

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4477 ◽  
Author(s):  
Heng Zheng ◽  
Chunsheng Pu ◽  
CHOE TONG IL

Hydraulic fracturing is an essential technique for the development of shale gas, due to the low permeability in formation. Abundant natural fractures contained in a formation are indispensable for the development of a fracture network. In this paper, a damage-stress-seepage coupled hydraulic fracture expansion model, based on the extended finite element method, is established. The simulation results show that shear failure occurs when the hydraulic fracture interacts with a frictional natural fracture, while tensile failure occurs when it interacts with a cement natural fracture. Low interaction angles and high tensile strength of the rock are beneficial for the generation of a complex fracture network. Furthermore, under the same geological conditions and injection parameters, frictional natural fractures are more beneficial for the generation of a complex fracture network, when compared with cement natural fractures. This can not only effectively increase the propagation length of the natural fracture, but also effectively reduce its reactive resistance. This research is of great significance for the efficient exploitation of unconventional oil and gas resources.


2022 ◽  
Author(s):  
Cong Lu ◽  
Li Ma ◽  
Jianchun Guo

Abstract Hydraulic fracturing technology is an important means to stimulate unconventional reservoirs, and the placement morphology of proppant in cross fractures is a key factor affecting the effect of hydraulic fracturing. It is very important to study the proppant transport law in cross fractures. In order to study the proppant transportation law in cross fractures, based on the CFD-DEM method, a proppant transport model in cross fractures was established. From the two aspects of the flow field in the fractures and the morphology of the proppant dune, the influence of the natural fracture approach angle, the fracturing fluid viscosity and injection rate on the proppant transport is studied. Based on the principle of hydropower similarity, the conductivity of proppant dune under different conditions is quantitatively studied. The results show that the natural fracture approach angle affects the distribution of proppant and fracturing fluid in natural fractures, and further affects the proppant placement morphology in hydraulic fractures and natural fractures. When the fracturing fluid viscosity is low and the displacement is small, the proppant forms a "high and narrow" dune at the entrance of the fracture. With the increase of the fracturing fluid viscosity and injection rate, the proppant settles to form a "short and wide" placement morphology. Compared with the natural fracture approach angle, the fracturing fluid viscosity and injection rate have a more significant impact on the conductivity of proppant dune. This paper investigated the proppant transportation in cross fractures, and quantitatively analyzes the conductivity of proppant dunes with different placement morphology. The results of this study can provide theoretical guidance for the design of hydraulic fracturing.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8297
Author(s):  
Jianfa Wu ◽  
Haoyong Huang ◽  
Ersi Xu ◽  
Junfeng Li ◽  
Xiaohua Wang

The formation mechanism and propagation behaviors of a three-dimensional hydraulic fracture network in fractured shale reservoirs remain unclear, especially when the scale of hydraulic fractures is much larger than that of natural fractures. In this study, taking the well XH in the Longmaxi shale reservoir in the Sichuan Basin, China as an example, we develop a fully three-dimensional numerical model for hydraulic fracturing coupled with microseismicity based on the discrete lattice method. We introduce a randomly generated discrete fracture network into the proposed model and explore the formation mechanism of the hydraulic fracture network under the condition that the hydraulic fractures are much larger than natural fractures in scale. Moreover, microseismic events are inversely synthesized in the numerical model, which allows the evolution of the fracture network to be monitored and evaluated quantitatively. In addition, we analyze the effects of injection rate, horizontal stress difference, and fluid viscosity on fracture propagation. Our results show that when the scale of hydraulic fractures is much larger than that of natural fractures, the fracture morphology of “main hydraulic fractures + complex secondary fractures” is mainly formed. We find that a high injection rate can not only create a complex fracture network, but also improve the uniform propagation of multi-cluster fractures and enhance far-field stimulation efficiency. Optimizing the horizontal wellbore intervals with low horizontal stress differences as the sweet spots of hydraulic fracturing is also beneficial to improve the stimulation efficiency. For zones with a large number of natural fractures, it is recommended to use an injection schedule with high viscosity fluid early and low viscosity fluid late to allow the hydraulic fractures to propagate to the far-field to maximize the stimulation effect.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jingyin Wang ◽  
Ying Guo ◽  
Kaixun Zhang ◽  
Guangying Ren ◽  
Jinlong Ni

Multistage fracturing of horizontal wells to form a complex fracture network is an essential technology in the exploitation of shale gas. Different from the conventional reservoirs, the mechanical characteristics of shale rock have significant heterogeneity due to the existence of beddings, which makes it difficult to predict the fracture geometry in the shale reservoir. Based on the laboratory experiments, the factors that affect fracture propagation were analyzed. The experimental results revealed that the hydraulic fracture would cross the beddings under the high vertical stress difference, while it would propagate along with the bedding under the low vertical stress difference; besides, the low injection rate and viscosity of the fracturing fluid were beneficial to generate a complex fracture network. Under the high injection rate and viscosity, a planar fracture was created, while a nonplanar fracture was observed under the low injection rate and viscosity, and branch fracture was created. According to the acoustic emission events, the shear events were the main events that occurred during the hydraulic fracturing process, and the acoustic emission events could be adopted to describe the fracture network. Lastly, the supercritical carbon dioxide fracturing was more effective compared with the hydraulic fracturing because the fracture network was more complex.


2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


Fractals ◽  
2017 ◽  
Vol 25 (04) ◽  
pp. 1740007 ◽  
Author(s):  
GUANGLONG SHENG ◽  
YULIANG SU ◽  
WENDONG WANG ◽  
FARZAM JAVADPOUR ◽  
MEIRONG TANG

According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length ([Formula: see text]), deviation angle ([Formula: see text]), iteration times ([Formula: see text]) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.


2011 ◽  
Vol 361-363 ◽  
pp. 349-352 ◽  
Author(s):  
Hui Hui Kou ◽  
Wei Dong Liu ◽  
Dong Dong Hou ◽  
Ling Hui Sun

Ultra-low permeability shale reservoir require a large fracture network to maximal well performance. In conventional reservoirs and tight gas sands, single fracture length and conductivity are the key drivers for stimulation performance. In shale reservoirs, where complex fracture network are created, single fracture length and conductivity are insufficient to stimulate. This is the reason for the concept of using stimulated reservoir volume as a correlation parameter for well performance. This paper mainly illustrates perforation with interlaced row well pattern and multi-fracture fracturing technology and refracturing applied in vertical wells. Moreover, it establishes the seepage differential equation of multi-fracture.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gou Feifei ◽  
Liu Chuanxi ◽  
Ren Zongxiao ◽  
Qu Zhan ◽  
Wang Sukai ◽  
...  

Unconventional resources have been successfully exploited with technological advancements in horizontal-drilling and multistage hydraulic-fracturing, especially in North America. Due to preexisting natural fractures and the presence of stress isotropy, several complex fracture networks can be generated during fracturing operations in unconventional reservoirs. Using the DVS method, a semianalytical model was created to analyze the transient pressure behavior of a complex fracture network in which hydraulic and natural fractures interconnect with inclined angles. In this model, the complex fracture network can be divided into a proper number of segments. With this approach, we are able to focus on a detailed description of the network properties, such as the complex geometry and varying conductivity of the fracture. The accuracy of the new model was demonstrated by ECLIPSE. Using this method, we defined six flow patterns: linear flow, fracture interference flow, transitional flow, biradial flow, pseudoradial flow, and boundary response flow. A sensitivity analysis was conducted to analyze each of these flow regimes. This work provides a useful tool for reservoir engineers for fracture designing as well as estimating the performance of a complex fracture network.


2020 ◽  
Vol 10 (9) ◽  
pp. 3027
Author(s):  
Cong Lu ◽  
Li Ma ◽  
Zhili Li ◽  
Fenglan Huang ◽  
Chuhao Huang ◽  
...  

For the development of tight oil reservoirs, hydraulic fracturing employing variable fluid viscosity and proppant density is essential for addressing the problems of uneven placement of proppants in fractures and low propping efficiency. However, the influence mechanisms of fracturing fluid viscosity and proppant density on proppant transport in fractures remain unclear. Based on computational fluid dynamics (CFD) and the discrete element method (DEM), a proppant transport model with fluid–particle two-phase coupling is established in this study. In addition, a novel large-scale visual fracture simulation device was developed to realize the online visual monitoring of proppant transport, and a proppant transport experiment under the condition of variable viscosity fracturing fluid and proppant density was conducted. By comparing the experimental results and the numerical simulation results, the accuracy of the proppant transport numerical model was verified. Subsequently, through a proppant transport numerical simulation, the effects of fracturing fluid viscosity and proppant density on proppant transport were analyzed. The results show that as the viscosity of the fracturing fluid increases, the length of the “no proppant zone” at the front end of the fracture increases, and proppant particles can be transported further. When alternately injecting fracturing fluids of different viscosities, the viscosity ratio of the fracturing fluids should be adjusted between 2 and 5 to form optimal proppant placement. During the process of variable proppant density fracturing, when high-density proppant was pumped after low-density proppant, proppants of different densities laid fractures evenly and vertically. Conversely, when low-density proppant was pumped after high-density proppant, the low-density proppant could be transported farther into the fracture to form a longer sandbank. Based on the abovementioned observations, a novel hydraulic fracturing method is proposed to optimize the placement of proppants in fractures by adjusting the fracturing fluid viscosity and proppant density. This method has been successfully applied to more than 10 oil wells of the Bohai Bay Basin in Eastern China, and the average daily oil production per well increased by 7.4 t, significantly improving the functioning of fracturing. The proppant settlement and transport laws of proppant in fractures during variable viscosity and density fracturing can be efficiently revealed through a visualized proppant transport experiment and numerical simulation study. The novel fracturing method proposed in this study can significantly improve the hydraulic fracturing effect in tight oil reservoirs.


2020 ◽  
pp. 014459872097251
Author(s):  
Wenguang Duan ◽  
Baojiang Sun ◽  
Deng Pan ◽  
Tao Wang ◽  
Tiankui Guo ◽  
...  

The tight sandstone oil reservoirs characterized by the low porosity and permeability must be hydraulically fractured to obtain the commercial production. Nevertheless, the post-fracturing production of tight oil reservoirs is not always satisfactory. The influence mechanism of various factors on the fracture propagation in the tight oil reservoirs needs further investigation to provide an optimized fracturing plan, obtain an expected fracture morphology and increase the oil productivity. Thus, the horizontal well fracturing simulations were carried out in a large-scale true tri-axial test system with the samples from the Upper Triassic Yanchang Fm tight sandstone outcrops in Yanchang County, Shaanxi, China, and the results were compared with those of fracturing simulations of the shale outcrop in the 5th member of Xujiahe Fm (abbreviated as the Xu 5th Member) in the Sichuan Basin. The effects of the natural fracture (NF) development degree, horizontal in-situ stress conditions, fracturing treatment parameters, etc. on the hydraulic fracture (HF) propagation morphology were investigated. The results show that conventional hydraulic fracturing of the tight sandstone without NFs only produces a single double-wing primary fracture. The fracture propagation path in the shale or the tight sandstone with developed NFs is controlled by the high horizontal differential stress. The higher stress difference (<12MPa) facilitates forming the complex fracture network. It is recommended to fracture the reservoir with developed NFs by injecting the high-viscosity guar gum firstly and the low-viscosity slick water then to increase the SRV. The low-to-high variable rate fracturing method is recommended as the low injection rate facilitates the fracturing fluid filtration into the NF system, and the high injection rate increases the net pressure within the fracture. The dual-horizontal well simultaneous fracturing increases the HF density and enhances the HF complexity in the reservoir, and significantly increases the possibility of forming the complex fracture network. The fracturing pressure curves reflect the fracture propagation status. According to statistical analysis, the fracturing curves are divided into types corresponding to multi-bedding plane (BP) opening, single fracture generation, multi-fracture propagation under variable rate fracturing, and forming of the fracture network through communicating the HF with NFs. The results provide a reference for the study of the HF propagation mechanism and the fracturing design in the tight sandstone reservoirs.


Sign in / Sign up

Export Citation Format

Share Document