scholarly journals Transcriptomic Analysis for Differentially Expressed Genes in Ovarian Follicle Activation in the Zebrafish

2018 ◽  
Vol 9 ◽  
Author(s):  
Bo Zhu ◽  
Lakhansing Pardeshi ◽  
Yingying Chen ◽  
Wei Ge
2008 ◽  
Vol 36 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Pascal J. H. Smeets ◽  
Heleen M. de Vogel-van den Bosch ◽  
Peter H. M. Willemsen ◽  
Alphons P. Stassen ◽  
Torik Ayoubi ◽  
...  

Peroxisome proliferator-activated receptor (PPAR)α regulates lipid metabolism at the transcriptional level and modulates the expression of genes involved in inflammation, cell proliferation, and differentiation. Although PPARα has been shown to mitigate cardiac hypertrophy, knowledge about underlying mechanisms and the nature of signaling pathways involved is fragmentary and incomplete. The aim of this study was to identify the processes and signaling pathways regulated by PPARα in hearts challenged by a chronic pressure overload by means of whole genome transcriptomic analysis. PPARα−/− and wild-type mice were subjected to transverse aortic constriction (TAC) for 28 days, and left ventricular gene expression profile was determined with Affymetrix GeneChip Mouse Genome 430 2.0 arrays containing >45,000 probe sets. In unchallenged hearts, the mere lack of PPARα resulted in 821 differentially expressed genes, many of which are related to lipid metabolism and immune response. TAC resulted in a more pronounced cardiac hypertrophy and more extensive changes in gene expression (1,910 and 312 differentially expressed genes, respectively) in PPARα−/− mice than in wild-type mice. Many of the hypertrophy-related genes were related to development, signal transduction, actin filament organization, and collagen synthesis. Compared with wild-type hypertrophied hearts, PPARα−/− hypertrophied hearts revealed enrichment of gene clusters related to extracellular matrix remodeling, immune response, oxidative stress, and inflammatory signaling pathways. The present study therefore demonstrates that, in addition to lipid metabolism, PPARα is an important modulator of immune and inflammatory response in cardiac muscle.


2018 ◽  
Vol 26 (8) ◽  
pp. 1094-1104
Author(s):  
Liping Zheng ◽  
Ruichen Luo ◽  
Tie Su ◽  
Liaoliao Hu ◽  
Fengxin Gao ◽  
...  

The activation of primordial follicles is critical to ovarian follicle development, which directly influences female fertility and reproductive life span. Several studies have suggested a role for long noncoding RNAs (lncRNAs) in ovarian function. However, the precise involvement of lncRNAs in the initiation of primordial follicles is still unknown. Here, an in vitro culture model was used to investigate the roles of lncRNAs in primordial follicle activation. We found that primordial follicles in day 3 mouse ovaries were activated after culturing for 8 days in vitro, as indicated by ovarian morphology changes, increases in primary follicle number, and downregulation of mammalian Sterile 20-like kinase messenger RNA (mRNA) and upregulation of growth differentiation factor 9 mRNA. We next examined lncRNA expression profiles by RNA sequencing at the transcriptome level and found that among 60 078 lncRNAs, 6541 lncRNA were upregulated and 2135 lncRNA were downregulated in 3-day ovaries cultured for 8 days in vitro compared with ovaries from day 3 mice. We also found that 4171 mRNAs were upregulated and 1795 were downregulated in the cultured ovaries. Gene ontology and pathway analyses showed that the functions of differentially expressed lncRNA targets and mRNAs were closely linked with many processes and pathways related to ovary development, including cell proliferation and differentiation, developmental processes, and other signaling transduction pathways. Additionally, many novel identified lncRNAs showed inducible expression, suggesting that these lncRNAs may be good candidates for investigating mouse primordial follicle activation. This study provides a foundation for further exploring lncRNA-related mechanisms in the initiation of mouse primordial follicles.


Sign in / Sign up

Export Citation Format

Share Document