scholarly journals Electrical Characteristics Estimation of Photovoltaic Modules via Cuckoo Search—Relevant Vector Machine Probabilistic Model

2021 ◽  
Vol 9 ◽  
Author(s):  
Jianmin Ban ◽  
Xinyu Pan ◽  
Ziqiang Bi ◽  
Minming Gu

This work presents an optimized probabilistic modeling methodology that facilitates the modeling of photovoltaic (PV) modules with measured data over a range of environmental conditions. The method applies cuckoo search to optimize kernel parameters, followed by electrical characteristics estimation via relevance vector machine. Unlike analytical modeling techniques, the proposed cuckoo search-relevance vector machine (CS-RVM) takes advantages of no required knowledge of internal PV parameters, more accurate estimation capability and less computational effort. A comparative study has been done among the electrical characteristics predicted by back-propagation neural network (BPNN), radial basis function neural network (RBFNN), support vector machine (SVM), Villalva's model, relevance vector machine (RVM), and the CS-RVM. Experimental results show that the proposed CS-RVM provides the best prediction in most scenarios.

2011 ◽  
Vol 11 (04) ◽  
pp. 897-915 ◽  
Author(s):  
ROSHAN JOY MARTIS ◽  
CHANDAN CHAKRABORTY

This work aims at presenting a methodology for electrocardiogram (ECG)-based arrhythmia disease detection using genetic algorithm (GA)-optimized k-means clustering. The open-source ECG data from MIT-BIH arrhythmia database and MIT-BIH normal sinus rhythm database are subjected to a sequence of steps including segmentation using R-point detection, extraction of features using principal component analysis (PCA), and pattern classification. Here, the classical classifiers viz., k-means clustering, error back propagation neural network (EBPNN), and support vector machine (SVM) have been initially attempted and subsequently m-fold (m = 3) cross validation is used to reduce the bias during training of the classifier. The average classification accuracy is computed as the average over all the three folds. It is observed that EBPNN and SVM with different order polynomial kernel provide significant accuracies in comparison with k-means one. In fact, the parameters (centroids) of k-means algorithm are locally optimized by minimizing its objective function. In order to overcome this limitation, a global optimization technique viz., GA is suggested here and implemented to find more robust parameters of k-means clustering. Finally, it is shown that GA-optimized k-means algorithm enhances its accuracy to those of other classifiers. The results are discussed and compared. It is concluded that the GA-optimized k-means algorithm is an alternate approach for classification whose accuracy will be near to that of supervised (viz., EBPNN and SVM) classifiers.


2020 ◽  
Author(s):  
Ji-Yong An

Abstract Self-interactions Protein (SIPs) play crucial roles in biological activities of organisms. Many high-throughput methods can be used to identify SIPs. However, these methods are both time-consuming and expensive. How to develop effective computational approaches for identifying SIPs is a challenging task. In the paper, we presented a novelty computational method called RRN-SIFT, which combines the Recurrent Neural Network (RNN) with Scale Invariant Feature Transform (SIFT) to predict SIPs based on protein evolutionary information. The main advantage of the proposed RNN-SIFT model is that it used SIFT for extracting key feature by exploring the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM) and employed RNN classifier to carry out classification based on extracted features. Extensive experiments show that the RRN-SIFT obtained average accuracy of 94.34% and 97.12% on yeast and human dataset. We also compared our performance with the Back Propagation Neural Network (BPNN), the state-of-the-art support vector machine (SVM) and other exiting methods. By comparing with experimental results, the performance of RNN-SIFT is significantly better than those of the BPNN, SVM and other previous methods in the domain. Therefore, we can come to the conclusion that the proposed RNN-SIFT model is useful tools and can execute incredibly well for predicting SIPs, as well as other bioinformatics tasks. In order to facilitate widely studies and encourage future proteomics research, a freely available web server called RNN-SIFT-SIPs was developed, and is available at http://219.219.62.123:8888/RNNSIFT/ and includes source code and SIPs datasets.


Sign in / Sign up

Export Citation Format

Share Document