scholarly journals Comparative Study of the Effects of Machine Parameters on DFIG and PMSG Variable Speed Wind Turbines During Grid Fault

2021 ◽  
Vol 9 ◽  
Author(s):  
Kenneth E. Okedu ◽  
Maamar Al Tobi ◽  
Saleh Al Araimi

This study investigates the transient performance of two variable speed wind turbines (VSWTs), namely doubly fed induction generator (DFIG) and the permanent magnet synchronous generator (PMSG), that are widely employed in wind energy conversion, considering their machine parameters. The machine parameters of both wind turbines were changed considering different scenarios, while keeping other parameters constant, to study the behavior of the wind generators. This study was carried out using the same operating conditions of rated wind speed, based on the characteristics of both wind turbine technologies. The wind turbines were subjected to a severe three phase to ground bolted fault to test the robustness of their controllers during grid fault conditions. Efforts were made to carry out an extensive comparative study to investigate the machine parameters that have more influence on the stability of the different wind turbines considered in this study. Simulations were carried out using power system computer-aided design and electromagnetic transient including DC (PSCAD/EMTDC). Effective machine parameter selection could help solve fault ride-through (FRT) problems cost-effectively for both VSWTs, without considering the external circuitry of and changing the original architecture of the wind turbines.

2014 ◽  
Vol 950 ◽  
pp. 314-320 ◽  
Author(s):  
Jun Jia ◽  
Xin Xin Hu ◽  
Ping Ping Han ◽  
Yan Ping Hu

With the scale of wind farm continuously increasing, when grid fault, the influences of the wind turbines connected to the grid on the stability of the power grid can never be ignored. Therefore, there are higher standards of the wind turbines’ abilities of fault ride-through (FRT) and producing reactive power. This paper studies the direct-drive wind power system, and the main point is the fault ride-through (FRT) of the permanent magnetic synchronous generator (PMSG) with Chopper. By establishing the dynamic model of PMSG under the environment of DigSILENT, this paper simulates the fault ride-through (FRT) of the direct-drive wind power system connecting into power grid. During the research, we focus on the stability of voltage about the Chopper to the DC bus under faults. What’s more, in this paper, we analysis the data about how the Chopper help the DC bus to improve its stability. The simulation results show that: when there is a fault on the point of common coupling, the permanent magnetic synchronous generator has the capability of fault ride-through (FRT). Especially when there is a voltage dip on the grid side, the permanent magnetic synchronous generator could produce reactive power for power grid, effectively preventing the system voltage from declining seriously, so as to improve the system stability under faults.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Geev Mokryani ◽  
Pierluigi Siano ◽  
Antonio Piccolo ◽  
Vito Calderaro

A fuzzy controller for improving Fault Ride-Through (FRT) capability of Variable Speed Wind Turbines (WTs) equipped with Doubly Fed Induction Generator (DFIG) is presented. The controller is designed in order to compensate the voltage at the Point of Common Coupling (PCC) by regulating the reactive and active power generated by WTs. The performances of the controller are evaluated in some case studies considering a different number of wind farms in different locations. Simulations, carried out on a real 37-bus Italian weak distribution system, confirmed that the proposed controller can enhance the FRT capability in many cases.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4291
Author(s):  
Paxis Marques João Roque ◽  
Shyama Pada Chowdhury ◽  
Zhongjie Huan

District of Namaacha in Maputo Province of Mozambique presents a high wind potential, with an average wind speed of around 7.5 m/s and huge open fields that are favourable to the installation of wind farms. However, in order to make better use of the wind potential, it is necessary to evaluate the operating conditions of the turbines and guide the independent power producers (IPPs) on how to efficiently use wind power. The investigation of the wind farm operating conditions is justified by the fact that the implementation of wind power systems is quite expensive, and therefore, it is imperative to find alternatives to reduce power losses and improve energy production. Taking into account the power needs in Mozambique, this project applied hybrid optimisation of multiple energy resources (HOMER) to size the capacity of the wind farm and the number of turbines that guarantee an adequate supply of power. Moreover, considering the topographic conditions of the site and the operational parameters of the turbines, the system advisor model (SAM) was applied to evaluate the performance of the Vestas V82-1.65 horizontal axis turbines and the system’s power output as a result of the wake effect. For any wind farm, it is evident that wind turbines’ wake effects significantly reduce the performance of wind farms. The paper seeks to design and examine the proper layout for practical placements of wind generators. Firstly, a survey on the Namaacha’s electricity demand was carried out in order to obtain the district’s daily load profile required to size the wind farm’s capacity. Secondly, with the previous knowledge that the operation of wind farms is affected by wake losses, different wake effect models applied by SAM were examined and the Eddy–Viscosity model was selected to perform the analysis. Three distinct layouts result from SAM optimisation, and the best one is recommended for wind turbines installation for maximising wind to energy generation. Although it is understood that the wake effect occurs on any wind farm, it is observed that wake losses can be minimised through the proper design of the wind generators’ placement layout. Therefore, any wind farm project should, from its layout, examine the optimal wind farm arrangement, which will depend on the wind speed, wind direction, turbine hub height, and other topographical characteristics of the area. In that context, considering the topographic and climate features of Mozambique, the study brings novelty in the way wind farms should be placed in the district and wake losses minimised. The study is based on a real assumption that the project can be implemented in the district, and thus, considering the wind farm’s capacity, the district’s energy needs could be met. The optimal transversal and longitudinal distances between turbines recommended are 8Do and 10Do, respectively, arranged according to layout 1, with wake losses of about 1.7%, land utilisation of about 6.46 Km2, and power output estimated at 71.844 GWh per year.


Author(s):  
Manasi Pattnaik

In recent years, wind energy has become one of the most important and promising sources of renewable energy, which demands additional transmission capacity and better means of maintaining system reliability. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. For example, grid codes are being revised to ensure that wind turbines would contribute to the control of voltage and frequency and also to stay connected to the host network following a disturbance. In response to the new grid code requirements, several DFIG models have been suggested recently. This paper deals with the introduction of DFIG and AC/DC/AC converter control


2013 ◽  
Vol 4 (4) ◽  
pp. 1071-1081 ◽  
Author(s):  
Surour Alaraifi ◽  
Ahmed Moawwad ◽  
Mohamed Shawky El Moursi ◽  
Vinod Khadkikar

Author(s):  
Ghulam sarwar Kaloi ◽  
Jie Wang ◽  
Mazhar H Baloch

<p><em> </em><em>     </em>The present paper formulates the state space modeling of doubly fed induction generator (DFIG) based wind turbine system for the purpose of the stability analysis. The objective of this study is to discuss the various modes of operation of the DFIG system under different operating conditions such as voltage sags with reference to variable wind speed and grid connection. The proposed control methodology exploits the potential of the DFIG scheme to avoid that grid voltage unbalances compromise the machine operation, and to compensate voltage unbalances at the point of common coupling (PCC), preventing adverse effects on loads connected next to the PCC. This methodology uses the rotor side converter (RSC) to control the stator current injected through the machine and the GSC to control the stator voltage to minimize the electromagnetic torque oscillations. Extensive simulation results on a 2MW DFIG wind turbine system illustrate the enhanced system performance and verify the effectiveness of the controller.</p>


2002 ◽  
Vol 26 (3) ◽  
pp. 171-188 ◽  
Author(s):  
Vladislav Akhmatov

This article describes the second part of a larger investigation of dynamic interaction between variable-speed wind turbines equipped with doubly-fed induction generators (DFIG) and the power grid. A simulation model is applied for dynamic stability investigations, with the entire power grid subjected to a short-circuit fault. During the grid disturbances, the DFIG converter is found to be the most sensitive part of the wind turbine. Therefore the electrical currents are determined using the transient generator model. The converter action is crucial for wind turbine operation associated with such disturbances, especially regarding tripping or uninterrupted operation.


Sign in / Sign up

Export Citation Format

Share Document