scholarly journals Numerical Study on Discharging Characteristics of Entangled Cluster of Particles in Particle Bed

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoli Huang ◽  
Liang Ge ◽  
Nan Gui ◽  
X. T. Yang ◽  
J. Y. Tu ◽  
...  

To better understand the flow features of the particle cluster in a particle bed, discharging of the particle entangled cluster is simulated by the discrete element method (DEM). The particle entangled cluster is composed of eight particles connected by rigid bonds, and the simulated entangled cluster models are divided into two types: axisymmetric u-particles and distorted z-particles. The simulation starts with the closed discharge outlet, and the bonded clusters with different IDs are randomly added from the entrance section. The particles fall freely and accumulate freely in the particle bed. The discharge hole opens after all the particles are stationary for a period. Then, the particles are discharged from the particle bed under gravity. The discharging process has time-dependent bulk-movement behavior. There is not much mixing between layers on the boundary. The vertical end not only makes the packing loose but also intensifies the interaction between particles due to entanglement. Consequently, the discharge features of particle entangled clusters of different included angles were quantified. The results show that the particle discharging speeds depend on the entanglement angle (α of u-particles and η of z-particles) and discharging outlet diameter. A large included angle may play the role of retarding or inhibiting the discharging flow rate. Therefore, the entanglement of particle components also always plays the key role of retarding the discharge.

Author(s):  
Liang Ge ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
Shengyao Jiang

Abstract To better understand the flow features of pebble cluster in pebble bed, discharging of the pebble cluster were simulated by DEM. The pebble entangled cluster was composed of eight particles connected by rigid bonds and the simulated cluster models are divided into two types: axisymmetric u-particle and distorted z-particle. The simulation starts with the closed discharge outlet and the bonded clusters with different ID are randomly added from the entrance section. The pebbles fall freely and accumulate freely in the pebble bed. The discharge hole opens after all the pebbles being stationary for a period. Then the pebbles are discharged from the pebble bed under gravity. The discharging process is time-dependent bulk-movement behavior. There is not much mixing between layers on the boundary. The vertical end makes the packing loose, but also intensifies the interaction between particles due to entanglement. Consequently, the discharge features of pebble clusters of different included angles were quantified. The results show that the pebble discharging speeds depend on entanglement angle (α of u-particle and η of z-particle) and discharging outlet diameter. A large included angle may play the role of retarding or inhibiting the discharging flowrate. Therefore, the entanglement of particles component also always plays the key role of retarding the discharge.


2021 ◽  
Author(s):  
Christoph Rettinger ◽  
Sebastian Eibl ◽  
Ulrich Rüde ◽  
Bernhard Vowinckel

<p>With the increasing computational power of today's supercomputers, geometrically fully resolved simulations of particle-laden flows are becoming a viable alternative to laboratory experiments. Such simulations enable detailed investigations of transport phenomena in various multiphysics scenarios, such as the coupled interaction of sediment beds with a shearing fluid flow. There, the majority of available simulations as well as experimental studies focuses on setups of monodisperse particles. In reality, however, polydisperse configurations are much more common and feature unique effects like vertical size segregation.</p><p>In this talk, we will present numerical studies of mobile polydisperse sediment beds in a laminar shear flow, with a ratio of maximum to minimum diameter up to 10. The lattice Boltzmann method is applied to represent the fluid dynamics through and above the sediment bed efficiently. We model particle interactions by a discrete element method and explicitly account for lubrication forces. The fluid-particle coupling mechanism is based on the geometrically fully resolved momentum transfer between the fluid and the particulate phase. We will highlight algorithmic aspects and communication schemes essential for massively parallel execution.</p><p>Utilizing these capabilities allows us to achieve large-scale simulations with more than 26.000 densely-packed polydisperse particles interacting with the fluid. With this, we are able to reproduce effects like size segregation and to study the rheological behavior of such systems in great detail. We will evaluate and discuss the influence of polydispersity on these processes. These insights will be used to improve and extend existing macroscopic models.</p>


2008 ◽  
Vol 43 (11-12) ◽  
pp. 2981-3002 ◽  
Author(s):  
Myhuong Nguyen ◽  
Martin Rhodes ◽  
Kurt Liffman ◽  
Ian McKinnon ◽  
Ron Beckett

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
H. Kruggel-Emden ◽  
S. Rickelt ◽  
S. Wirtz ◽  
V. Scherer

Based on the time-driven discrete element method, granular flow within a hopper is investigated. The main focus is thereby set on hopper vessel design variables such as discharge rates and applied wall pressures. Within the used model contacts are assumed as linear viscoelastic in normal and frictional-elastic in tangential direction. The hopper geometry is chosen according to Yang and Hsiau (2001, “The Simulation and Experimental Study of Granular Materials Discharged From a Silo With the Placement of Inserts,” Powder Technol., 120(3), pp. 244–255), who performed both experimental and numerical investigations. The considered setup is attractive because it involves only a small number of particles enabling fast modeling. However, the results on the experimental flow rates reported are contradictory and are afflicted with errors. By an analysis of the hopper fill levels at different points of time, the correct average discharge times and flow rates are obtained. Own simulation results are in good agreement with the experimental flow rates and discharge times determined. Based on the thereby defined set of simulation parameters, a sensitivity analysis of parameters such as friction coefficients, stiffnesses, and time steps is performed. As flow properties, besides the overall discharge times, the discharge time averaged axial and radial velocity distributions within the hopper and the normal stresses on the side walls during the first seconds of discharge are considered. The results show a strong connection of the friction coefficients with the discharge times, the velocity distributions, and the stresses on the side walls. Other parameters only reveal a weak often indifferent influence on the studied flow properties.


2013 ◽  
Vol 690-693 ◽  
pp. 2730-2733
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Bo Yan ◽  
Jun Feng Sun

Railway ballast tamping operations is employed in order to restore the geometry of railway track distorted by train traffics. The main goal is to compact the stone ballast under the sleepers supporting the railway squeezing and vibrations. The ballast compactness is the most direct index for evaluating the effect of tamping operation. This paper presents an experimental method used to detect the railway ballast compactness before and after tamping operation based on water-filling method, and creates a discrete element analysis model of railway ballast which analyzes the change of ballast compactness before and after tamping operation based on discrete element method. The simulation results are very similar with experimental results, which verify that the discrete element method is an effective method to evaluate the change of railway ballast compactness during tamping process.


Sign in / Sign up

Export Citation Format

Share Document