scholarly journals Can CO2 Emission Reduction and Economic Growth Be Compatible? Evidence From China

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuang Zhang ◽  
You-Hua Chen ◽  
Chien-Ming Wang

The influence of low-carbon energy on economic development is a vital issue. Using the provincial panel data in China from 2000 to 2017, this work investigated the aggregate effects of low-emission electricity. The results showed that 1) when the ratio of low-emission electricity to total electricity increases by 1%, the GDP per capita will increase by 0.16% and CO2 emissions will decrease by 0.848%. In other words, low-emission electricity can achieve the goal of low-carbon economic development; 2) the self-supply of low-emission electricity, rather than trade and efficiency, is the main reason for China’s boosted economic growth; and 3) low-emission electricity increases the regional economic gap in China. The effects of pollution inhibition and economic promotion on low-emission electricity in developed areas are significantly greater than those in less developed areas. Thus, the low-emission electricity policy in China should benefit the economy and avoid the excessive economic gap among regions. Policymakers should vigorously promote the low-emission electricity revolution and pay attention to the inclination of energy policy to the central and western regions.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


2017 ◽  
Vol 9 (7) ◽  
pp. 228 ◽  
Author(s):  
Ting Liu ◽  
Wenqing Pan

This paper combines Theil index method with factor decomposition technique to analyze China eight regions’ inequality of CO2 emissions per capita, and discuss energy structure, energy intensity, industrial structure, and per capita output’s impacts on inequality. This research shows that: (1) The trend of China regional carbon inequality is in the opposite direction to the per capita CO2 emission level. Namely, as the per capita CO2 emission levels rise, regional carbon inequality decreases, and vice versa. (2) Per capita output factor reduces regional carbon inequality, whereas energy structure factor and energy intensity factor increase the inequality. (3) More developed areas can reduce the carbon inequality by improving the energy structure, whereas the divergence of energy intensity in less developed areas has increased to expand the carbon inequity. Thus, when designing CO2 emission reduction targets, policy makers should consider regional differences in economic development level and energy efficiency, and refer to the main influencing factors. At the same time, upgrading industrial structure and upgrading energy technologies should be combined to meet the targets of economic growth and CO2 emission reduction.


2020 ◽  
Vol 12 (5) ◽  
pp. 1875 ◽  
Author(s):  
Hongli Zhang ◽  
Lei Shen ◽  
Shuai Zhong ◽  
Ayman Elshkaki

Energy-rich cities tend to rely on resource-based industries for economic growth, which leads to a great challenge for its low-carbon and sustainable economic development. The contiguous area of Shanxi and Shaanxi Provinces, and the Inner Mongolia Autonomous Region (SSIM) is one of the most important national energy bases in China. Its development pattern, dominated by the coal industry, has led to increasingly prominent structural problems along with difficult low-carbon transition. Taking energy-rich cities in the contiguous area of SSIM as examples, this study analyzes the main drivers of CO2 emissions and explores the role of economic structure transformation in carbon emission reduction during 2002–2012 based on structural decomposition analysis (SDA). The results show that CO2 emissions increase significantly with the coal industry expansion in energy-rich cities. Economic growth and structure are the main drivers of CO2 emission increments. An energy structure dominated by coal and improper product allocation structure can also cause CO2 emission increases. Energy consumption intensity is the main factor curbing CO2 emission growth in energy-rich cities. The decline of agriculture and services contributes to carbon emission reduction, while the expansion of mining and primary energy processing industries has far greater effects on CO2 emission growth. Finally, we propose that energy-rich cities must make more efforts to transform energy-driven economic growth patterns, cultivate new pillar industries by developing high-end manufacturing, improve energy efficiency through more investment in key technologies and the market-oriented reform of energy pricing and develop natural gas and renewable energy to accelerate low-carbon transition.


2014 ◽  
Vol 672-674 ◽  
pp. 2070-2076
Author(s):  
Jie Zhang ◽  
Yun Feng Li ◽  
Yun Hua Yang

In the context of low-carbon economy, this paper analyzes the necessity of technical transformation of the loss reduction in power networks. A low-energy-consumption benefit evaluation model was established for some technical transformation projects for loss reduction, so was a low-emission benefit evaluation model for loss reduction measures. Through field survey and statistical computation, the CO2 emission reduction potential of a selected power supply company, by adopting technical transformation for loss reduction, was comprehensively assessed. On this basis, the optimization of low-carbon technical transformations for loss reduction in plan and construction, operation and maintenance, and management and administration was put forward, in order to realize the mentioned CO2 emission reduction potential of the company.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 599
Author(s):  
Lijie Gao ◽  
Xiaoqi Shang ◽  
Fengmei Yang ◽  
Longyu Shi

As the most basic unit of the national economy and administrative management, the low-carbon transformation of the vast counties is of great significance to China’s overall greenhouse gas emission reduction. Although the low-carbon evaluation (LCE) indicator system and benchmarks have been extensively studied, most benchmarks ignore the needs of the evaluated object at the development stage. When the local economy develops to a certain level, it may be restricted by static low-carbon target constraints. This study reviews the relevant research on LCE indicator system and benchmarks based on convergence. The Environmental Kuznets Curve (EKC), a dynamic benchmark system for per capita carbon emissions (PCCEs), is proposed for low-carbon counties. Taking Changxing County, Zhejiang Province, China as an example, a dynamic benchmark for PCCEs was established by benchmarking the Carbon Kuznets Curve (CKC) of best practices. Based on the principles of best practice, comparability, data completeness, and the CKC hypothesis acceptance, the best practice database is screened, and Singapore is selected as a potential benchmark. By constructing an econometric model to conduct an empirical study on Singapore’s CKC hypothesis, the regression results of the least squares method support the CKC hypothesis and its rationality as a benchmark. The result of the PCCE benchmarks of Changxing County show that when the per capita income of Changxing County in 2025, 2030, and 2035 reaches USD 19,172.92, USD 24,483.01, and USD 29,366.11, respectively, the corresponding benchmarks should be 14.95 tons CO2/person, 14.70 tons CO2/person, and 13.55 tons CO2/person. For every 1% increase in the county’s per capita income, the PCCE allowable room for growth is 17.6453%. The turning point is when the per capita gross domestic product (PCGDP) is USD 20,843.23 and the PCCE is 15.03 tons of CO2/person, which will occur between 2025 and 2030. Prior to this, the PCCE benchmark increases with the increase of PCGDP. After that, the PCCE benchmark decreases with the increase of PCGDP. The system is economically sensitive, adaptable to different development stages, and enriches the methodology of low-carbon indicator evaluation and benchmark setting at the county scale. It can provide scientific basis for Chinese county decision makers to formulate reasonable targets under the management idea driven by evaluation indicators and emission reduction targets and help counties explore the coordinated paths of economic development and emission reduction in different development stages. It has certain reference significance for other developing regions facing similar challenges of economic development and low-carbon transformation to Changxing County to formulate scientific and reasonable low-carbon emission reduction targets.


2019 ◽  
Vol 9 (2) ◽  
pp. 4019-4026
Author(s):  
V. H. M. Nguyen ◽  
L. D. L. Nguyen ◽  
C. V. Vo ◽  
B. T. T. Phan

Energy for future sustainable economic development is considered one crucial issue in Vietnam. This article aims to investigate green scenarios for power generation in Vietnam by 2030. Four scenarios named as business as usual (BAU), low green (LG), high green (HG) and crisis have been proposed for power generation in Vietnam with projection to 2030. Three key factors have been selected for these scenarios, namely: (1) future fuel prices, (2) reduction of load demand caused by the penetration of LED technology and rooftop photovoltaic (PV) systems, and (3) the introduction of power generation from renewable sources. The least costly structure of power generation system has been found. CO2 emission reduction of HG in comparison to the BAU scenario and its effect on generation cost reduction are computed. Results show that BAU is the worst scenario in terms of CO2 emissions because of the higher proportion of power generation from coal and fossil fuels. LG and HG scenarios show their positive impacts both on CO2 emissions and cost reduction. HG is defined as the greenest scenario by its maximum potential on CO2 emission reduction (~146.92Mt CO2) in 2030. Additionally, selling mitigated CO2can make green scenarios more competitive to BAU and Crisis in terms of cost. Two ranges of generation cost (4.3-5.5 and 6.0-7.7US$cent/kWh) have been calculated and released in correspondence with low and high fuel price scenarios in the future. Using LED lamps and increasing the installed capacity of rooftop PVs may help reduce electric load demand. Along with the high contribution of renewable sources will make the HG scenario become more attractive both in environmental and economic aspects when the Crisis scenario comes. Generation costs of all scenarios shall become cheap enough for promoting economic development in Vietnam by 2030.


Author(s):  
Wenmei KANG ◽  
Benfan LIANG ◽  
Keyu XIA ◽  
Fei XUE ◽  
Yu LI

After setting the goal of peaking carbon emissions before 2030 and achieving carbon neutrality before 2060, it has become an irresistible trend for China to decouple carbon emissions from its economic growth. Since cities play a central role in reducing carbon emissions, the issues such as whether and when their carbon dioxide emissions can be decoupled from economic growth have become the focus of attention. Based on the carbon dioxide emissions of 264 prefecture-level cities in China from 2000 to 2017, this paper uses the Tapio decoupling index to measure the decoupling relationship between carbon emissions and economic growth of cities, analyzes the space–time evolution characteristics of carbon emissions and decoupling indexes by stages, and explores the relationship between carbon emissions and socio-economic development characteristics such as per capita GDP and industrial structure. The main conclusions drawn therefrom are as follows: (i) From 2000 to 2017, the city-wide carbon emissions rose from 2.484 billion tons in 2000 to 7.462 billion tons in 2017, registering a total increase of 200.40%. But the growth rate of carbon emissions within cities has been significantly reduced. (ii) As years passed by, the number of cities that achieved strong decoupling saw a significant increase, from zero in the 10th–11th Five-Year Plan period to 14 in the 12th Five-Year Plan period and the first two years of the 13th Five-Year Plan period, accounting for 5.3% of the total number of cities. (iii) There is an inverted U-shaped curve relationship between per capita carbon emissions and per capita GDP, which is consistent with the EKC curve hypothesis, but Chinese cities are still in the growth stage of the quadratic curve currently. The correlation between per capita CO2 emission and the proportion of the secondary industry was positive. The results of this study are expected to provide experience for the low-carbon development of cities in China and other developing countries, and provide references for the formulation and evaluation of policies and measures related to low-carbon economic development based on the decoupling model.


Sign in / Sign up

Export Citation Format

Share Document