scholarly journals Analysis of Centroid Trajectory Characteristics of Axial-Flow Pump Impeller Under Hydraulic Excitation

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaohui Duan ◽  
Fangpin Tang ◽  
Hao Xu ◽  
Jian Chen ◽  
Qun Lu ◽  
...  

The hydraulic excitation characteristics of axial flow pump unit are studied through theoretical analysis, numerical simulation and field test in this paper. The correlation between impeller hydraulic and radial vibration displacement of impeller centroid is obtained through theoretical analysis. Through the 1-way fluid-solid-interaction (FSI) numerical simulation, the distributions of water pressure and displacement on the impeller surface are obtained, and the time-domain and frequency-domain characteristics of transient hydraulic and radial displacement are revealed. Through the field test, the external characteristics of axial flow pump unit and the time-frequency characteristics of the pressure pulsation at the measuring points beside the inlet of the impeller are obtained. The comparisons between simulation results and experimental results show that the former is accurate and reliable.

2015 ◽  
Vol 799-800 ◽  
pp. 581-584
Author(s):  
Xin Zhang ◽  
Yuan Zheng ◽  
Zheng Yang Zhang ◽  
Jun Qian ◽  
Jie Fu ◽  
...  

It’s necessary to calculate and analyze the strength of the pump impeller for the safe operation of the pump. In this paper, the impeller strength of a two-way full-adjust horizontal axial-flow pump in a domestic pump station under forward pumping conditions was calculated by using the unidirectional fluid-structure interaction method; it means loading the blade surface water pressure calculating from CFD software CFX as structure surface loads to the blade, and then calculating the strength of the impeller using finite element software ANSYS ; the strength of the impeller was calculated under different blade rotating angle conditions. Through the calculation, we has got static stress and deformation distribution in the impeller. The results show that under each blade rotating angle, the maximum static stress always increases with lift increasing; the maximum static stress occurs at the junction of the blade and hub; the stress concentration also occurs in there prone to cause fatigue failure; maximum deformation of the blade occurs in the leading edge close to the rim; the maximum static stress is far less than yield strength of the material that the static stress can not cause cracks.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1493
Author(s):  
Weidong Cao ◽  
Wei Li

The operating range of axial flow pumps is often constrained by the onset of rotating stall. An improved method using a double inlet nozzle to stabilize the performance curve is presented in the current study; a single inlet nozzle and three kinds of double inlet nozzle with different rib gap widths at the inlet of axial flow pump impeller were designed. Three dimensional (3D) incompressible flow fields were simulated, and the distributions of turbulence kinetic energy and velocity at different flow rates located at the inlet section, as well as the pressure and streamline in the impeller, were obtained at the same time. The single inlet nozzle scheme and a double inlet nozzle scheme were studied; the experimental and numerical performance results show that although the cross section is partly blocked in the double inlet nozzle, the head and efficiency do not decline at stable operation flow rate. On small flow rate condition, the double inlet nozzle scheme effectively stabilized the head-flow performance, whereby the block induced by the backflow before the impeller was markedly improved by using a double inlet nozzle. It has also been found that the rib gap width impacts the efficiency curve of the axial flow pump.


2013 ◽  
Vol 444-445 ◽  
pp. 486-489
Author(s):  
Xiao Xu Zhang ◽  
Hong Ming Zhang ◽  
Xiao Ping Li

To make the submersible axial flow pump have better performance, it is very significant to know about the flowing distributions. Based on N-S equations and Standard turbulence model and SIMPLE algorithm, a CFD analysis was made of the full flow passage in this type of pump. The study result shows the flow rule and will provide a guide for the designing and the producing practice.


2010 ◽  
Vol 24 (4) ◽  
pp. 971-976 ◽  
Author(s):  
Zhongdong Qian ◽  
Yan Wang ◽  
Wenxin Huai ◽  
Youngho Lee

Sign in / Sign up

Export Citation Format

Share Document