scholarly journals Neutronics Perturbation Calculation Method Study of Solid Breeder Tritium Breeding Blanket for TBR Enhancement

2021 ◽  
Vol 9 ◽  
Author(s):  
Shen Qu ◽  
Qixiang Cao ◽  
Fengchao Zhao ◽  
Xueren Wang ◽  
Xuru Duan ◽  
...  

Tritium breeding blanket (TBB) is an essential component in a fusion reactor, which has functions of tritium breeding, energy generation, and neutron shielding. Tritium breeding ratio (TBR) is a key parameter to evaluate whether the TBB could produce enough tritium to achieve the tritium self-sufficiency (TBR >1) for fusion reactor. Current codes or software are hard to meet the requirements of high efficiency, high resolution, and high automation for neutronic optimization of TBB. In this article, the application of the density perturbation calculation on a solid breeder TBB was first performed. Then, the method of the geometry perturbation calculation based on the virtual density theory was studied. Results and comparison analysis indicate that the 1st + 2nd-order neutronic perturbation calculations (including the density perturbation and the geometry perturbation) results are consistent with the transport results under a perturbation of −15% to +15%. It is proven to be valid to use the perturbation calculation for rapid TBR enhancement study of the solid breeder TBB.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5442
Author(s):  
Shen Qu ◽  
Qixiang Cao ◽  
Xuru Duan ◽  
Xueren Wang ◽  
Xiaoyu Wang

A tritium breeding blanket (TBB) is an essential component in a fusion reactor, which has functions of tritium breeding, energy generation and neutron shielding. Tritium breeding ratio (TBR) is a key parameter to evaluate whether the TBB could produce enough tritium to achieve tritium self-sufficiency (TBR > 1) for a fusion reactor. Current codes or software struggle to meet the requirements of high efficiency and high automation for neutronic optimization of the TBB. In this paper, the multiphysics coupling and automatic neutronic optimization method study for a solid breeder TBB is performed, and a corresponding code is developed. A typical module of China fusion engineering test reactor (CFETR) helium cooled ceramic breeder (HCCB) TBB was selected, and a 3D neutronics model of an initial scheme is developed. The automatic neutronic optimization was performed by using the developed code for verification. Results indicate that the TBR could increase from 1.219 to 1.282 (~5.17% improvement), and that the maximum temperature of each type of material in the optimized scheme is below the allowable temperature. It is of great scientific significance and engineering value to explore and study the algorithm for automatic neutronic optimization and the code development of the TBB.


2021 ◽  
Vol 11 (11) ◽  
pp. 5234
Author(s):  
Jin Hun Park ◽  
Pavel Pereslavtsev ◽  
Alexandre Konobeev ◽  
Christian Wegmann

For the stable and self-sufficient functioning of the DEMO fusion reactor, one of the most important parameters that must be demonstrated is the Tritium Breeding Ratio (TBR). The reliable assessment of the TBR with safety margins is a matter of fusion reactor viability. The uncertainty of the TBR in the neutronic simulations includes many different aspects such as the uncertainty due to the simplification of the geometry models used, the uncertainty of the reactor layout and the uncertainty introduced due to neutronic calculations. The last one can be reduced by applying high fidelity Monte Carlo simulations for TBR estimations. Nevertheless, these calculations have inherent statistical errors controlled by the number of neutron histories, straightforward for a quantity such as that of TBR underlying errors due to nuclear data uncertainties. In fact, every evaluated nuclear data file involved in the MCNP calculations can be replaced with the set of the random data files representing the particular deviation of the nuclear model parameters, each of them being correct and valid for applications. To account for the uncertainty of the nuclear model parameters introduced in the evaluated data file, a total Monte Carlo (TMC) method can be used to analyze the uncertainty of TBR owing to the nuclear data used for calculations. To this end, two 3D fully heterogeneous geometry models of the helium cooled pebble bed (HCPB) and water cooled lithium lead (WCLL) European DEMOs were utilized for the calculations of the TBR. The TMC calculations were performed, making use of the TENDL-2017 nuclear data library random files with high enough statistics providing a well-resolved Gaussian distribution of the TBR value. The assessment was done for the estimation of the TBR uncertainty due to the nuclear data for entire material compositions and for separate materials: structural, breeder and neutron multipliers. The overall TBR uncertainty for the nuclear data was estimated to be 3~4% for the HCPB and WCLL DEMOs, respectively.


2021 ◽  
Vol 2072 (1) ◽  
pp. 012004
Author(s):  
I R Maemunah ◽  
Z Su’ud ◽  
A Waris ◽  
D Irwanto

Abstract Variation of solid ceramic breeding might be one of the excellent candidates in a fusion reactor. The LiAlO2, Li4SiO4, Li2O, and Li2ZrO3 show pretty good requirements in tritium breeding capability and thermodynamic behavior. Especially for LiAlO2 and Li2ZrO3, in which they could be possible to breed without neutron multiplying needed as blanket used generally in order to reach the self-sufficiency reactor. So that, it makes up the material could be possible as high-estimation breeder material.


2019 ◽  
Vol 34 (13) ◽  
pp. 1950103 ◽  
Author(s):  
H. Sadeghi ◽  
M. Habibi

In this paper, we simulated an appropriate model for an advanced breeding blanket of future TOKAMAK fusion reactors with solid breeder (Li4SiO4) building material in the form of pebble beds, ODS ferritic steel as structural material and Beryllium as neutron multiplier. With the MCNPX code, the efficiency of this proposed model for the production and self-sufficiency of tritium was investigated. Total tritium breeding ratio of 1.15 is achieved. The helium-cooled pebble bed system and parameters of temperature and pressure are investigated by COMSOL multiphysics simulating software. The temperature of helium as cooling gas never exceeded 530[Formula: see text]C and the tolerable temperature of beryllium was obtained at 650[Formula: see text]C. In the proposed design, it is adequate to enrich the 6Li to 40%.


2008 ◽  
Vol 16 (2) ◽  
pp. 135-145 ◽  
Author(s):  
V. Kapyshev ◽  
V. Kovalenko ◽  
V. Poliksha ◽  
A. Sidorov ◽  
YU. Strebkov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document