scholarly journals Experimental Study of the Corrosiveness of Ternary Blends of Biodiesel Fuel

2021 ◽  
Vol 9 ◽  
Author(s):  
Jassinnee Milano ◽  
Hamdani Umar ◽  
A. H. Shamsuddin ◽  
A. S. Silitonga ◽  
Osama M. Irfan ◽  
...  

Biodiesel is an alternative renewable resource to petroleum-based diesel. The aim of using biodiesel is to reduce environmental pollution and combat global warming. Biodiesel application in compression ignition engines has shown its compatibility with better combustion characteristics and high engine performance. Many advantages can be obtained by using biodiesel, including reducing exhaust gases, reducing air toxicity, providing energy security, and being biodegradable. However, biodiesel’s disadvantage involves oxidation stability, corrosion, degradation, and compatibility with other metallic materials. The present study investigates the corrosive behavior of the ternary blend (waste cooking-Calophyllum inophyllum biodiesel-diesel) fuel that occurs in contact with mild steel and stainless steel 316. The observation study for mild steel and stainless steel 316 material under the static immersion method was performed for 7,200 h and 14,400 h, respectively, at room temperature (25°C–30°C). In every 720 and 1,440 h of immersion time, the coupon’s profile was analyzed by scanning electron microscopy (SEM)/electron-dispersive spectrometer (EDS), and the mass loss was observed, for corrosivity investigation. Based on the obtained results, the average corrosion rate of mild steel and stainless steel 316 is 0.6257 and 0.0472 nm/year at 7,200 h, respectively; the difference in corrosion rate for these metallic materials is approximately 92.46%. The degradation of the fuel properties such as kinematic viscosity, density, refractive index, and acid value was monitored. In this study, stainless steel 316 was more resistant to corrosion attack with some micro pitting and showed better compatibility with the ternary blend than mild steel. The regression analysis and the correlation of corrosion rate were studied.

Author(s):  
Olayide Rasaq Adetunji ◽  
Onwuka O. Ude ◽  
Sidikat I. Kuye ◽  
Enock O. Dare ◽  
Kamol O. Alamu ◽  
...  

Enormous funds are spent on the protection of engineering components and structures annually as a result of corrosion. Degradation sets in, due to electrochemical reaction that takes place between materials and the environment leading to reduced performance. The associated downtime caused by replacement and maintenance of vessels, pipes, valves and other equipment necessitated seeking for techniques and method to efficiently combat corrosion. This study evaluated the potentiodynamic polarization of brass, Coated Mild Steel (CMS) and Stainless Steel (SS) in sodium chloride (NaCl). The samples (1 x 30 x 30 mm3) were used as working electrodes for Potentiodynamic Polarization Experiment (PPE). The samples were cleaned, and soaked in 1M NaCl solution. Open circuit potentials and current densities of the samples were obtained from PPE which were used to evaluate their corrosion rates. The pH of the media was recorded before and after each experiment. The results obtained using PPE in NaCl (in mm/y) were 0.209, 0.0053 and 0.0046; for brass, MSC and SS respectively. The pH of the medium was measured as 10.9.The results revealed that brass had highest corrosion rate in the medium. The least corrosion rate was obtained for Stainless Steel in 1M NaCl followed by Coated Mild Steel.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Asadikiya ◽  
Yu Zhong ◽  
Mohammad Ghorbani

Three types of corrosion inhibitors consisting of sodium diphosphate (Na2H2P2O7), sodium benzoate (NaC7H5O2), and sodium tetraborate (Na2B4O7) were evaluated to analyze their effectiveness to inhibit the aluminum alloy 3303 (UNS A93303) against corrosion, in water-ethylene glycol (C2H6O2) mixture. Potentiodynamic polarization tests were carried out to study the effect of each chemical. The temperature of solutions was 88°C and the aluminum samples were coupled with five other metals consisting of mild steel, stainless steel, brass, copper, and solder to include the effect of galvanic corrosion. The results showed that sodium diphosphate can effectively protect the aluminum alloy 3303 in comparison with two other chemicals. The effect of thermal shocking on the corrosivity of water-ethylene glycol solution was also investigated. It was indicated that the corrosivity of water-ethylene glycol solution increases because of thermal shocking, which oxidizes the aqueous ethylene glycol. The corrosion rate of aluminum alloy 3303 coupled with the five metals in thermal shocked water-ethylene glycol solution is 142 mpy, while it is 94 mpy in fresh water-ethylene glycol solution.


2020 ◽  
Vol 867 ◽  
pp. 224-228
Author(s):  
Suwarno ◽  
Handi Muhtadi

Stainless steel is commonly applied for food processing equipment because of its stability in acid-base conditions. However, corrosion and metal release from the steel can occur in some situations lead to food contamination and decrease the component reliability as well. The objective of the present work is to study the corrosion behavior of austenitic stainless steel 316 L in a water solution containing 9 wt.% NaCl mixed with different concentrations of citric acid. Immersion test and polarization measurements were conducted to quantify the corrosion rate and polarization behaviors of the samples. The result shows that the shape of polarization curves and the corrosion rate are pH dependence. An increased citric acid concentration until the pH value of 4 will enhance the passive film development, but the further increase in acidity aggravates the corrosion attack.


2007 ◽  
Vol 20-21 ◽  
pp. 379-382 ◽  
Author(s):  
Xiao Xia Sheng ◽  
Yen Peng Ting ◽  
Simo Olavi Pehkonen

Microbiologically influenced corrosion (MIC) is a serious problem that continues to plague many industrial systems. In this study, a method to prevent MIC by the use of an azole-type organic compound on the metal substrates was studied. Inhibition of MIC of mild steel and stainless steel 316 by 2-Methylbenzimidazole (MBI) in seawater with sulphate-reducing bacteria (SRB) was investigated using electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). MBI was shown to be an effective inhibitor in controlling MIC by two strains of sulphate-reducing bacteria: Desulfovibrio desulfuricans, and a local marine isolate. EIS analysis shows an increase in charge transfer resistance for both mild steel and stainless steel 316 after the addition of MBI in the aqueous solution. AFM analyses show a decrease in the surface roughness and pit depth after the addition of MBI. Of the two bacterial strains, it is found that MBI is more effective in the inhibition of corrosion by D. desulfuricans. At a concentration of 1mM, MBI shows a higher MIC inhibition effect on stainless steel 316 (corrosion inhibition 99.5%) than on the mild steel (corrosion inhibition 59.4%). These results indicate that MBI shows potential application in the inhibition of MIC of metal substrates.


2019 ◽  
Author(s):  
Chem Int

The corrosion inhibition characteristics of two medicinal molecules phenylalanine and rutin on mild steel in 1.0M Hydrochloric acid were evaluated using gravimetric method. Corrosion inhibition efficiency of 83.78 and 90.40 % was obtained respectively after seven days. However, phenylalanine showed weak accumulative higher corrosion inhibition efficiency. The presence of both molecules in the corrosive environment reduced the corrosion rate constant and increased the material half-life. Thermodynamic data calculated suggests a spontaneous adsorption of the molecules on the mild steel’s surface.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 543
Author(s):  
Ketan Kumar Sandhi ◽  
Jerzy Szpunar

Nickel superalloy Hastelloy-N, alloy X-750, stainless steel 316 (SS316), and stainless steel 304 (SS304) are among the alloys used in the construction of molten salt reactor (MSR). These alloys were analyzed for their corrosion resistance behavior in molten fluoride salt, a coolant used in MSR reactors with 46.5% LiF+ 11.5% NaF+ 42% KF. The corrosion tests were run at 700 °C for 100 h under the Ar cover gas. After corrosion, significant weight loss was observed in the alloy X750. Weight loss registered in SS316 and SS304 was also high. However, Hastelloy-N gained weight after exposure to molten salt corrosion. This could be attributed to electrochemical plating of corrosion products from other alloys on Hastelloy-N surface. SEM–energy-dispersive X-ray spectroscopy (EDXS) scans of cross-section of alloys revealed maximum corrosion damage to the depth of 250 µm in X750, in contrast to only 20 µm on Hastelloy-N. XPS wide survey scans revealed the presence of Fe, Cr, and Ni elements on the surface of all corroded alloys. In addition, Cr clusters were formed at the triple junctions of grains, as confirmed by SEM–EBSD (Electron Back Scattered Diffraction) analysis. The order of corrosion resistance in FLiNaK environment was X750 < SS316 < SS304 < Hastelloy-N.


Sign in / Sign up

Export Citation Format

Share Document