Potentiodynamic Polarization of Brass, Stainless and Coated Mild Steel in 1M Sodium Chloride Solution

Author(s):  
Olayide Rasaq Adetunji ◽  
Onwuka O. Ude ◽  
Sidikat I. Kuye ◽  
Enock O. Dare ◽  
Kamol O. Alamu ◽  
...  

Enormous funds are spent on the protection of engineering components and structures annually as a result of corrosion. Degradation sets in, due to electrochemical reaction that takes place between materials and the environment leading to reduced performance. The associated downtime caused by replacement and maintenance of vessels, pipes, valves and other equipment necessitated seeking for techniques and method to efficiently combat corrosion. This study evaluated the potentiodynamic polarization of brass, Coated Mild Steel (CMS) and Stainless Steel (SS) in sodium chloride (NaCl). The samples (1 x 30 x 30 mm3) were used as working electrodes for Potentiodynamic Polarization Experiment (PPE). The samples were cleaned, and soaked in 1M NaCl solution. Open circuit potentials and current densities of the samples were obtained from PPE which were used to evaluate their corrosion rates. The pH of the media was recorded before and after each experiment. The results obtained using PPE in NaCl (in mm/y) were 0.209, 0.0053 and 0.0046; for brass, MSC and SS respectively. The pH of the medium was measured as 10.9.The results revealed that brass had highest corrosion rate in the medium. The least corrosion rate was obtained for Stainless Steel in 1M NaCl followed by Coated Mild Steel.

2019 ◽  
Vol 7 (4.14) ◽  
pp. 168
Author(s):  
N Z. Nor Hashim ◽  
K Kassim ◽  
F H. Zaidon

Two N-substituted thiosemicarbazone derivatives namely as 2-(4-chlorobenzylidene)-N-phenylhydrazinecarbothioamide and 2-benzylidene-N-phenylhydrazinecarbothioamide (L1 and L2, respectively) have been tested as corrosion inhibitors on mild steel in 1 M HCl. The ligands were synthesized and investigated using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS).  The obtained results indicated that inhibition efficiency, (IE, %) L1 increased with increasing inhibitor concentrations which behaved as a good corrosion inhibitor compared to L2. The synthesized ligands were successfully characterized by melting point, elemental analysis (C, H, N, and S), Fourier-transform infrared spectroscopy (FT-IR) and NMR (1H and 13C) spectroscopy. The excellent inhibition effectiveness for both compounds on mild steel before and after immersion in 1 M HCl solution containing 40 ppm of L1 and L2 were also verified by scanning electron microscope (SEM). Based on potentiodynamic polarization results, it can be concluded that all investigated compounds are mixed-type inhibitors and obey the Langmuir adsorption isotherm. 


2018 ◽  
Vol 65 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Mohd Rashid ◽  
Umesh S. Waware ◽  
Afidah A. Rahim ◽  
A.M.S. Hamouda

Purpose The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid (HCl) medium. Design/methodology/approach PAni has been deposited potentiodynamically on mild steel in the presence of CTAB as a stabilizing agent to achieve high corrosion inhibition performance by the polymer deposition. The corrosion inhibition studies of CTAB-stabilized PAni inhibitor in 0.1 M HCl acidic solution was carried out by electrochemical methods, namely, open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy technique. Findings The results of electrochemical studies have shown that the CTAB-stabilized PAni inhibitor has higher corrosion efficiency than PAni on mild steel in 0.1 M HCl solution. The maximum per cent efficiency evaluated using the potentiodynamic polarization method is approximately 91.9. Originality/value CTAB-stabilized PAni has never been studied as a corrosion inhibitor for mild steel in an acidic medium. The investigations demonstrate relatively the better corrosion inhibition efficiency and high dispersion of the polymer in the acidic medium.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Mohd Rashid ◽  
Suhail Sabir ◽  
Afidah A. Rahim ◽  
Umesh Waware

The corrosion protective performance of polyaniline/palm oil (PAni-PO) blend coated on mild steel in 3% NaCl aqueous solutions has been evaluated by electrochemical methods, namely, open circuit potential (ocp), potentiodynamic polarization, and EIS spectroscopy. The surface of mild steel was covered by a dark green protective layer due to the physical interaction between the coating and steel. The permanent shifts of ocp and potentiodynamic polarization towards higher positive value of oxidation potential by about 800 mV and by a decrease in corrosion current density by sixfold in magnitude and an increase of 10 orders of magnitude in charge transfer resistance are due to protective coating.


2012 ◽  
Vol 581-582 ◽  
pp. 1058-1061
Author(s):  
Jia Qun Rui ◽  
Jun Li ◽  
Hu Dai Sun ◽  
Kun Yu Zhao ◽  
Zhi Dong Li ◽  
...  

This objective is to study the influence of pH on the electrochemical behavior of 00Cr15Ni7Mo2Cu2 supermartensitic stainless steel in 3.5% NaCl solutions using potentiondynamic polarization technique, open circuit potential tests and electrochemical impedance spectroscopy (EIS).The study reveals that the pitting potential (Eb) is higher, the passivation current densities (ip) is lower and the electrochemical impedance increases with the pH. The results indicate that this stainless steel offer good pitting corrosion resistance with the pH increasing in 3.5% NaCl solutions.


Author(s):  
Gina Genoveva ISTRATE ◽  
Alina Crina MUREȘAN

In this paper the corrosion behavior of different materials has been evaluated based on exposure in seawater. The laboratory immersion test technique has been applied to evaluate the effect of seawater on the corrosion behavior of different materials. In three sets of experiments, carbon steels (A681 Type O7), austenitic stainless steels (316L) and aluminium alloys (Al5083) were utilized. The specimens were fixed fully submerged in seawater. The corrosion process was evaluated using weight loss method, open-circuit potential measurements (OCP) and polarization techniques. To determine gravimetric index and the rate of penetration, samples were immersed in corrosive environment for 89 days and weighed periodically. The electrochemical experiments were conducted with a Potentiostat/Galvanostat (PGP 201) analyzer. It was connected to a PC. The Voltamaster software was used for electrochemical data analysis. A three-electrode cell composed of a specimen as a working electrode, Pt as counter electrode, and saturated calomel electrode (SCE) (Hg (l)/ Hg2Cl2 (s)) as a reference electrode were used for the tests. The weight loss tests revealed the lowest corrosion rate values for stainless steel and aluminium alloys, indicating a beneficial use for these materials in marine environments. The potentiodynamic method shows that the lowest corrosion rate in seawater (2.8 μm /year) was obtained for the Al5083 alloy, and the highest value of the corrosion rate (41.67 μm/year) for A681 carbon steel.


Kappa Journal ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Siti Raudatul Jannah ◽  
◽  
Ni Nyoman Ratini ◽  
Windarjoto Windarjoto ◽  
Hery Suyanto ◽  
...  

Method has been carried out. Research is done on mild steel zincalume type with immersion treatment (NaCl 3.5%) for 10 days, and 30 days and without immersion. Mild steel is laser irradiated (Nd-YAG 1064 nm, 7 ns) with energy of 120 mJ, and the data is taken with an accumulation of 3, delay time of 0.5 µs. Elements identification is done by taking data from up to 75 μm from the surface. The results of the analysis with LIBS showed immersion for 10 days, the corrosion rate and hardness of mild steel increased with 30 days immersion. The increase in the corrosion rate of mild steel is indicated by decreasing the value of dissolved oxygen intensity, the electrochemical reaction is fast. The decrease in the corrosion rate is indicated by the increase in the intensity value of Zn and Al elements associated with the formation of a passive film on the metal surface as a protective layer to protect further corrosion attacks.


2021 ◽  
Vol 55 (2) ◽  
pp. 317-325
Author(s):  
Hailong Jiang ◽  
Kui Zhang ◽  
Boyu Jiang ◽  
Xuejin Dai

In order to study the electrochemical corrosion law for the 13Cr stainless-steel tubing material in a high-speed Cl-containing liquid, a high-speed-flow experiment and a small three-electrode system, embedded in a small pipe, were used. The open circuit potential (OCP), polarization curve (PC) and electrochemical impedance spectroscopy (EIS) of the stainless-steel surface were tested in a medium with a flow velocity ranging from 10 to 22 m/s containing 1 w/% and 2 w/% of NaCl. By comparing it with the changes in the electrochemical-reaction parameters of the material in distilled water, the results of the experiment including the critical flow velocity, the change of corrosion rate and the electrochemical-reaction control steps were obtained. By theoretically solving the frictional force of the liquid against the wall surface and the adsorption capacity of the oxide film, and assuming that the oxide film is a macromolecular combination, the relationship between the adsorption capacity of different surface films and the critical flow velocity in the high-speed pipe flow was established. The results of this experiment and calculation can provide a preliminary prediction of the critical flow velocity corresponding to the inflection point of the wall-surface corrosion rate in an industrial pipe flow, thereby improving the process parameters and reducing the wall damage.


2018 ◽  
Vol 6 (1) ◽  
pp. 415-420
Author(s):  
Akoma Chigozie ◽  
Osarolube Eziaku ◽  
Abumere O. E.

The corrosion behavior of mild steel in carbonated drinks produced by Nigerian Breweries (Fanta, Sprite and Coke) was studied in the presence and absence of an eco-friendly inhibitor, Chrysophyllum albidum using Potentiodynamic polarization technique at 25 °C. Results showed that Chrysophyllum albidum reduced the current density (icorr), which in turn means that the corrosion rate was reduced significantly. The inhibition efficiency was found to be 93%, 78.6% and 87.5% for Fanta, Sprite and Coke respectively. The study also showed that Chrysophyllum albidum functioned as a mixed-type corrosion inhibitor in the three environments studied and therefore presents it as a long-term inhibitor for the corrosion of mild steel.


2019 ◽  
Vol 4 (4) ◽  
pp. 4-10
Author(s):  
Oluwatoyin Adenike Olaseinde ◽  
Olajesu F. Olarenwaju ◽  
Silifa T. Mohammed

The research investigated the effect of silver nanoparticles on the corrosion behaviour of Mild steel and 316 Austenitic stainless steel in 0.5M H2SO4 using the potentiodynamic polarization method. The nanoparticles were synthesized from the sweet potato (Ipomoea batatas) plant extracts using Silver Nitrate (AgNO3) and were characterized using Atomic Adsorption Spectroscopy, Fourier Transform Infrared Spectroscopy and the Ultraviolet Visible Spectroscopy Technique. The AAS results showed that the plant extract is eco-friendly as it does not contain heavy metals. The FTIR results showed the different functional groups present in the extracts obtained from the different parts of the plant to be Alcohol O-H, Nitrile C≡N, Alkyne C≡C, Alkene C=C and Benzene Ring C=C. The UV-Vis results showed the presence of phenolic compound which aided inhibition. The results from the potentiodynamic polarization showed that the nanoparticle obtained from the leaf has the highest corrosion inhibition efficiency and the corrosion inhibition efficiency increases as the concentration of inhibitors increases.


Sign in / Sign up

Export Citation Format

Share Document