scholarly journals Wetland Utilization and Adaptation Practice of a Coastal Megacity: A Case Study of Chongming Island, Shanghai, China

2021 ◽  
Vol 9 ◽  
Author(s):  
Junlin Bao ◽  
Shu Gao

Coastal urban areas are faced with risks induced by global warming and sea level rise, which puts pressure on regional sustainable development. In particular, land use adjustment is closely related to climate change for a coastal megacity. Coastal wetlands on the edge of the megacity represent a vulnerable ecosystem and a key area in terms of the resilient adaptation strategy. However, the interrelationship between the development of these wetlands and the megacity’s adaptation practice has not been sufficiently analyzed. From a historical perspective, based on document synthesis and field investigation, we attempt in this study to reveal long-term land use stages and driving factors in association with urban marginal wetlands, with a special reference to eastern Chongming Island, Shanghai. On such a basis, the future adaptation strategy of the megacity is evaluated. The analytical results show that this island has witnessed three periods of time for wetland utilization: traditional land use for salt production, fishery and agriculture before 1950, industrialization with rapid reclamation during 1950–2001, and the land use pattern orientated toward wetland ecosystem protection after 2002. The driving forces include sediment budget on the coast, wetland morphodynamic processes, sea level rise, population growth, and resource management policy changes. Transformation occurred between the wetland utilization stages in response to the changes of these forces. Furthermore, facing future climate change, there are different options of adaptation, e.g., retreatment and adherence. It may not be suitable for coastal cities with a large population to take the first option. It will be suitable for coastal communities to adhere to the location, if solutions to the problems of flooding risk, coastal erosion, and the maintenance of coastal facilities can be found. For eastern Chongming wetlands, as a key experimental area for ecosystem-oriented development in Shanghai, the transformation from the reclamation-oriented utilization toward the protection of wetland ecosystems represents the first step toward the latter option. We suggest that the next steps would be to maintain the ecological niche of the wetlands, to create new approaches to coastal engineering with contributions from the ecosystem, and to provide better ecosystem services.

Author(s):  
Emojong Amai Mercy ◽  
Eliud Garry Michura

This paper discusses the less publicised but far from less significant, an issue of how the international community’s approach to maritime boundary delimitation will be impacted by climate change resulting in sea level rise with coastal lands submerging affecting the international boundaries and impacting on biodiversity and human survival in the future. The climate change effect is already creating pressure on international law regardless of the direction that the law of the sea takes in remedying this dilemma. It is quite apparent that global disputes and conflicts are arising and solutions are needed urgently. The climate change and the consequent global sea level rise are widely touted to submerge islands and coastlines without discrimination. The international community has been relatively slow to react to what could pose an unprecedented threat to human civilisation.  The policies that have been applied have arguably been reactive and not proactive.  In future climate change may develop other by-products which may not be understood at this moment and may require a proactive approach. Further discussion of the merits of the potential paths is ideal in ensuring that appropriate and well thought-out resolutions are negotiated. Regardless of the outcome, the thorough debate is required to ensure the correct decision is made and that the balancing act between fulfilling states' interests and achieving a meaningful result does not become detrimental to the solidity and the enforceability of the outcome. There is a need to establish a comprehensive framework for ocean governance for management and long-term development and sustainability.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e80658 ◽  
Author(s):  
Joshua Steven Reece ◽  
Reed F. Noss ◽  
Jon Oetting ◽  
Tom Hoctor ◽  
Michael Volk

2020 ◽  
Vol 5 (11) ◽  
pp. 92 ◽  
Author(s):  
Rick Kool ◽  
Judy Lawrence ◽  
Martin Drews ◽  
Robert Bell

Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.


2011 ◽  
Vol 11 (24) ◽  
pp. 13421-13449 ◽  
Author(s):  
J. Hansen ◽  
M. Sato ◽  
P. Kharecha ◽  
K. von Schuckmann

Abstract. Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.58 ± 0.15 W m−2 during the 6-yr period 2005–2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be −1.6 ± 0.3 W m−2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade.


2021 ◽  
Author(s):  
◽  
Samuel Olufson

<p>Climate change impacts are beginning to be felt across the world. Therefore, the development and understanding of adaptation options is becoming more important. Sea-level rise and its associated impacts are predicted to continue and accelerate well into the next century. As such, it is important that adaptation options which reduce risks associated with sea-level rise are developed and are well understood. Managed retreat is one such option. While research on managed retreat is increasing, there is a lack of literature that identifies what managed retreat comprises, how to plan and stage the option over time, and how to cost it as an adaptation option.  This thesis aims to address this gap in the literature by answering the following three questions: (1) what are the issues related to implementing managed retreat as an adaptation strategy in coastal areas, now, and moving into the future?; (2) what are the components of managed retreat?; and (3) what framework could be developed for costing managed retreat?  A qualitative ‘desk-top’ approach was taken to deconstruct the components of managed retreat across space and time and to develop a framework for costing the components as part of an adaptation strategy. An in-depth analysis of literature, enabled an understanding of managed retreat implementation, and also informed the development of a component typology and costing framework for the adaptation option. The typology and framework were then tested for relevance and utility for decision making through a series of semi-structured discussions with key informants working in climate change adaptation.  Using the component typology and costing framework, a new approach is presented for staging and costing managed retreat, over time and in different contexts. The typology and framework contribute knowledge and guidance for local governments and infrastructure agencies when discussing managed retreat with their communities, for identifying and staging managed retreat, and for the costing of components. It does this by presenting components in stages as overlapping and parallel pathways, providing groupings of components according to types of costs, and identifying appropriate costing methodologies that enable the implementation of managed retreat. To conclude, the thesis suggests areas for future research on managed retreat.</p>


2021 ◽  
Author(s):  
◽  
Samuel Olufson

<p>Climate change impacts are beginning to be felt across the world. Therefore, the development and understanding of adaptation options is becoming more important. Sea-level rise and its associated impacts are predicted to continue and accelerate well into the next century. As such, it is important that adaptation options which reduce risks associated with sea-level rise are developed and are well understood. Managed retreat is one such option. While research on managed retreat is increasing, there is a lack of literature that identifies what managed retreat comprises, how to plan and stage the option over time, and how to cost it as an adaptation option.  This thesis aims to address this gap in the literature by answering the following three questions: (1) what are the issues related to implementing managed retreat as an adaptation strategy in coastal areas, now, and moving into the future?; (2) what are the components of managed retreat?; and (3) what framework could be developed for costing managed retreat?  A qualitative ‘desk-top’ approach was taken to deconstruct the components of managed retreat across space and time and to develop a framework for costing the components as part of an adaptation strategy. An in-depth analysis of literature, enabled an understanding of managed retreat implementation, and also informed the development of a component typology and costing framework for the adaptation option. The typology and framework were then tested for relevance and utility for decision making through a series of semi-structured discussions with key informants working in climate change adaptation.  Using the component typology and costing framework, a new approach is presented for staging and costing managed retreat, over time and in different contexts. The typology and framework contribute knowledge and guidance for local governments and infrastructure agencies when discussing managed retreat with their communities, for identifying and staging managed retreat, and for the costing of components. It does this by presenting components in stages as overlapping and parallel pathways, providing groupings of components according to types of costs, and identifying appropriate costing methodologies that enable the implementation of managed retreat. To conclude, the thesis suggests areas for future research on managed retreat.</p>


2019 ◽  
Author(s):  
Brooke L. Bateman ◽  
Lotem Taylor ◽  
Chad Wilsey ◽  
Joanna Wu ◽  
Geoffrey S. LeBaron ◽  
...  

AbstractClimate change is a significant threat to biodiversity globally, compounded by threats that could hinder species’ ability to respond through range shifts. However, little research has examined how future bird ranges may coincide with multiple stressors at a broad scale. Here, we assess the risk to 544 birds in the United States from future climate change threats under a mitigation-dependent global warming scenario of 1.5°C and an unmitigated scenario of 3.0°C. Threats considered included sea level rise, lake level change, human land cover conversion, and extreme weather events. We developed a gridded index of risk based on coincident threats, species richness, and richness of vulnerable species. To assign risk to individual species and habitat groups, we overlaid future bird ranges with threats to calculate the proportion of species’ ranges affected in both the breeding and non-breeding seasons. Nearly all species will face at least one new climate-related threat in each season and scenario analyzed. Even with lower species richness, the 3.0°C scenario had higher risk for species and groups in both seasons. With unmitigated climate change, multiple coincident threats will affect over 88% of the conterminous United States, and 97% of species could be affected by two or more climate-related threats. Some habitat groups will see up to 96% species facing three or more threats. However, climate change mitigation would reduce risk to birds from climate change-related threats across over 90% of the US. Across the threats included here, extreme weather events have the most significant influence on risk and the most extensive spatial coverage. Urbanization and sea level rise will also have disproportionate impacts on species relative to the area they cover. By incorporating threats into predictions of climate change impacts, this assessment provides a comprehensive picture of how climate change will affect birds and the places they need.


2021 ◽  
Vol 3 (1) ◽  
pp. 33-43
Author(s):  
Anushiya Jeganathan ◽  
Ramachandran Andimuthu ◽  
Palanivelu Kandasamy

Cities are dynamic systems resulting from the complex interaction of various socio-ecological and environmental developments. Climate change disproportionately affects cities mostly located in climate-sensitive areas; thus, these urban systems are the most critical in modern societies under changing climate scenarios, uncertain disruptions, and urban inhabitants' daily lives. It is essential to analyze the challenges in the metropolitan area through the lens of climate change. The present work analyses the challenges in Chennai, a coastal city in India and one of the chief industrial growth canters in Indian and South Asian region. The challenges are analyzed through the city’s system analysis via land use, green cover, population, and coastal hazards. Land use and green cover changes are studied through satellite images using ArcGIS and assessing coastal risks due to sea-level rise through GIS-based inundation model. There are drastic changes in land-use patterns; the green cover had reduced much, including agricultural and forest cover due to rapid urbanization. The land use has changed to 59.6% of the reduction in agriculture land, nearly 40% reduction in forest land, and 47% of the wetland over time. The observed mean sea level trend for Chennai is + 0.55 mm/year from 1916 to 2015 and the area of 21.75 sq. km is under the threat of inundation to 0.5m sea-level rise. The population growth, drastic changes in land use pattern, green cover reduction, and inundation due to sea-level rise increase the city's risks to climate change. There is a need to ensure that future land-use developments do not worsen the current climate risk level, either through influencing the hazards themselves or affecting the urban system's future vulnerability and adaptive capacity. The study also urges the zone level adaptation strategies to ensure the resilience of the city.


2019 ◽  
Vol 19 (3B) ◽  
pp. 227-237
Author(s):  
Pham Viet Hong ◽  
Tran Anh Tuan ◽  
Nguyen Thi Anh Nguyet

Today, environmental hazards and challenges are no longer confined to the national or regional scale but on the global scale. One of the biggest challenges for humanity is the natural disasters, global warming and sea level rise. The natural disasters causing serious consequences for human life, such as: Storms, floods, earthquakes, tsunamis, desertification, high tides... increase in frequency, intensity and scale. In recent years, Ca Mau province as well as coastal provinces of Vietnam is under great influence due to the impacts of climate change. One of the most affected districts in Ca Mau province is Ngoc Hien district. The district has a geographic location with three sides bordering the sea, one side bordering the river, a completely isolated terrain. The terrain is flat, strongly divided by the system of natural rivers and canals and intertwined canals, so it is constantly flooded by the sea. Ngoc Hien district is characterized by a sub-equatorial monsoon climate, directly affected by irregular semi-diurnal regime. The main purpose of the paper is to assess coastal vulnerability due to the impact of climate change over time with GIS-based remote sensing images. Remote sensing data with multi-time characteristics, collected in many periods and covering a wide area is an effective tool for monitoring shoreline fluctuations in particular and land use status of the study area in general.


Sign in / Sign up

Export Citation Format

Share Document