scholarly journals Hierarchical Approach for Comparing Collective Behavior Across Scales: Cellular Systems to Honey Bee Colonies

2021 ◽  
Vol 9 ◽  
Author(s):  
Jacob D. Davidson ◽  
Medhavi Vishwakarma ◽  
Michael L. Smith

How individuals in a group lead to collective behavior is a fundamental question across biological systems, from cellular systems, to animal groups, to human organizations. Recent technological advancements have enabled an unprecedented increase in our ability to collect, quantify, and analyze how individual responses lead to group behavior. However, despite a wealth of data demonstrating that collective behavior exists across biological scales, it is difficult to make general statements that apply in different systems. In this perspective, we present a cohesive framework for comparing groups across different levels of biological organization, using an intermediate link of “collective mechanisms” that connects individual responses to group behavior. Using this approach we demonstrate that an effective way of comparing different groups is with an analysis hierarchy that asks complementary questions, including how individuals in a group implement various collective mechanisms, and how these various mechanisms are used to achieve group function. We apply this framework to compare two collective systems—cellular systems and honey bee colonies. Using a case study of a response to a disturbance, we compare and contrast collective mechanisms used in each system. We then discuss how inherent differences in group structure and physical constraints lead to different combinations of collective mechanisms to solve a particular problem. Together, we demonstrate how a hierarchical approach can be used to compare and contrast different systems, lead to new hypotheses in each system, and form a basis for common research questions in collective behavior.

2020 ◽  
Vol 117 (30) ◽  
pp. 17949-17956 ◽  
Author(s):  
Chelsea N. Cook ◽  
Natalie J. Lemanski ◽  
Thiago Mosqueiro ◽  
Cahit Ozturk ◽  
Jürgen Gadau ◽  
...  

Individual differences in learning can influence how animals respond to and communicate about their environment, which may nonlinearly shape how a social group accomplishes a collective task. There are few empirical examples of how differences in collective dynamics emerge from variation among individuals in cognition. Here, we use a naturally variable and heritable learning behavior called latent inhibition (LI) to show that interactions among individuals that differ in this cognitive ability drive collective foraging behavior in honey bee colonies. We artificially selected two distinct phenotypes: high-LI bees that ignore previously familiar stimuli in favor of novel ones and low-LI bees that learn familiar and novel stimuli equally well. We then provided colonies differentially composed of different ratios of these phenotypes with a choice between familiar and novel feeders. Colonies of predominantly high-LI individuals preferred to visit familiar food locations, while low-LI colonies visited novel and familiar food locations equally. Interestingly, in colonies of mixed learning phenotypes, the low-LI individuals showed a preference to visiting familiar feeders, which contrasts with their behavior when in a uniform low-LI group. We show that the shift in feeder preference of low-LI bees is driven by foragers of the high-LI phenotype dancing more intensely and attracting more followers. Our results reveal that cognitive abilities of individuals and their social interactions, which we argue relate to differences in attention, drive emergent collective outcomes.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Catherine M. Mueller ◽  
Cameron Jack ◽  
Ashley N. Mortensen ◽  
Jamie D. Ellis

European foulbrood is a bacterial disease that affects Western honey bee larvae. It is a concern to beekeepers everywhere, though it is less serious than American foulbrood because it does not form spores, which means that it can be treated. This 7-page fact sheet written by Catherine M. Mueller, Cameron J. Jack, Ashley N. Mortensen, and Jamie Ellis and published by the UF/IFAS Entomology and Nematology Department describes the disease and explains how to identify it to help beekeepers manage their colonies effectively and prevent the spread of both American and European foulbrood.https://edis.ifas.ufl.edu/in1272


2021 ◽  
pp. 116566
Author(s):  
Kirsten S. Traynor ◽  
Simone Tosi ◽  
Karen Rennich ◽  
Nathalie Steinhauer ◽  
Eva Forsgren ◽  
...  
Keyword(s):  
The Usa ◽  

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 641
Author(s):  
Julio Chávez-Galarza ◽  
Ruth López-Montañez ◽  
Alejandra Jiménez ◽  
Rubén Ferro-Mauricio ◽  
Juan Oré ◽  
...  

Mitochondrial DNA variations of Peruvian honey bee populations were surveyed by using the tRNAleu-cox2 intergenic region. Only two studies have characterized these populations, indicating the presence of Africanized honey bee colonies in different regions of Peru and varied levels of Africanization, but the current status of its genetic diversity is unknown. A total of 512 honey bee colonies were sampled from three regions to characterize them. Our results revealed the presence of European and African haplotypes: the African haplotypes identified belong to sub-lineage AI (13) and sub-lineage AIII (03), and the European haplotypes to lineages C (06) and M (02). Of 24 haplotypes identified, 15 new sequences are reported here (11 sub-lineage AI, 2 sub-lineage AIII, and 2 lineage M). Peruvian honey bee populations presented a higher proportion from African than European haplotypes. High proportions of African haplotype were reported for Piura and Junín, unlike Lima, which showed more European haplotypes from lineage C. Few colonies belonging to lineage M would represent accidental purchase or traces of the introduction into Peru in the 19th century.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William G. Meikle ◽  
John J. Adamczyk ◽  
Milagra Weiss ◽  
Janie Ross ◽  
Chris Werle ◽  
...  

AbstractThe effects of agricultural pesticide exposure upon honey bee colonies is of increasing interest to beekeepers and researchers, and the impact of neonicotinoid pesticides in particular has come under intense scrutiny. To explore potential colony-level effects of a neonicotinoid pesticide at field-relevant concentrations, honey bee colonies were fed 5- and 20-ppb concentrations of clothianidin in sugar syrup while control colonies were fed unadulterated syrup. Two experiments were conducted in successive years at the same site in southern Arizona, and one in the high rainfall environment of Mississippi. Across all three experiments, adult bee masses were about 21% lower among colonies fed 20-ppb clothianidin than the untreated control group, but no effects of treatment on brood production were observed. Average daily hive weight losses per day in the 5-ppb clothianidin colonies were about 39% lower post-treatment than in the 20-ppb clothianidin colonies, indicating lower consumption and/or better foraging, but the dry weights of newly-emerged adult bees were on average 6–7% lower in the 5-ppb group compared to the other groups, suggesting a nutritional problem in the 5-ppb group. Internal hive CO2 concentration was higher on average in colonies fed 20-ppb clothianidin, which could have resulted from greater CO2 production and/or reduced ventilating activity. Hive temperature average and daily variability were not affected by clothianidin exposure but did differ significantly among trials. Clothianidin was found to be, like imidacloprid, highly stable in honey in the hive environment over several months.


Author(s):  
Belén Branchiccela ◽  
Loreley Castelli ◽  
Sebastián Díaz-Cetti ◽  
Ciro Invernizzi ◽  
Yamandú Mendoza ◽  
...  

2019 ◽  
Vol 59 (2) ◽  
pp. 193-194
Author(s):  
Moses Chemurot ◽  
Dirk C. de Graaf
Keyword(s):  

2019 ◽  
Vol 112 (6) ◽  
pp. 2993-2996 ◽  
Author(s):  
Robyn Underwood ◽  
Brian Breeman ◽  
Joseph Benton ◽  
Jason Bielski ◽  
Julie Palkendo ◽  
...  

Abstract The spotted lanternfly, Lycorma delicatula, is an introduced plant hopper that causes significant damage to host plants in the United States. Because of its affinity for tree of heaven, Ailanthus altissima, control efforts have focused on the use of the systemic insecticide, dinotefuran, in designated trap trees. There is concern about exposure to this pesticide by non-target species, especially honey bees, Apis mellifera, via lanternfly honeydew. Therefore, honey bee colonies were established in areas of high densities of trap trees and samples of honey, bees, and beeswax were collected in May, July, and October of 2017 for analysis. Samples were extracted by the QuEChERS method and analyzed using high-performance liquid chromatography with tandem mass spectrometry to determine the presence and quantity of dinotefuran. Additionally, honeydew from lanternflies was analyzed for dinotefuran and informal observations of trap tree visitors were made. None of the worker bee, wax, or honey samples indicated detectable levels of dinotefuran; however, honeydew samples collected did contain dinotefuran above the detection limit with amounts ranging from 3 to 100 ng per sample. The lack of dinotefuran in honey bee products matches the general absence of honey bees at trap trees in informal observations.


Sign in / Sign up

Export Citation Format

Share Document