scholarly journals Defensive Behavior and Morphometric Variation in Apis mellifera Colonies From Two Different Agro-Ecological Zones of North-Western Argentina

2021 ◽  
Vol 9 ◽  
Author(s):  
Eliana Bianchi ◽  
Marcelo Nicolás Agra ◽  
Cristina García ◽  
Gerardo Gennari ◽  
Luis Maldonado ◽  
...  

European lineages of Apis mellifera were first introduced into America for beekeeping purposes. A subsequent introduction and accidental release of A. m. scutellata resulted in hybridization events that gave rise to Africanized populations that rapidly spread throughout the continent. In Argentina, Africanized honey bees (AHBs) have been mostly detected in northern regions of the territory, and represent a valuable genetic resource for the selection of stocks with advantageous characteristics for beekeeping. The objective of the present study was to profile honey bee colonies of wild origin with potential beneficial traits for apiculture using morphological, molecular and behavioral traits. Honey bee colonies chosen for evaluation were located in two different agro-ecological regions in north-western Argentina (Tucumán province): The Chaco Depressed Plain (Leales apiary) and the Piedmont (Famaillá apiary). Each apiary was surveyed three times during the 2017–2018 season (mid-season, wintertime, and early spring) for: brood population, phoretic Varroa level and defensive behavior (run, fly, sting, and hang). At the midpoint of the beekeeping season colonies were also characterized by morphometry (45 variables) and mitochondrial haplotypes (COI–COII intergenic region). Apiaries studied showed similar patterns throughout the beekeeping season, for most of the characteristics monitored. However, significant variation in defensive behavior parameters was found between apiaries at the different times of evaluation. Twelve of 45 morphometric variables also showed significant differences between apiaries. The mitochondrial haplotype analysis revealed a high representation of African A4 and A1 haplotypes (91%) in both apiaries. Haplotype variation was associated with morphometric and behavioral traits. Multivariate analyses [principal component analysis (PCA) and principal coordinate analysis (PCoA)] including morphometric and behavior variables explained 65.3% (PCA) and 48.1% (PCoA) of the variability observed between colonies in the first two components. Several morphometric parameters and “fly” behavior were mainly associated with the separation of the colonies. The results from this study point to a possible association between morphometric and behavioral variation and the adaptation of honey bee colonies to differential agro-ecological conditions. We discuss how the detected variation between apiaries can be used for the selection and preservation of honey bee ecotypes in regional breeding programs.

2018 ◽  
Vol 9 (2) ◽  
pp. 291-298 ◽  
Author(s):  
M. Novicov Fanciotti ◽  
M. Tejerina ◽  
M.R. Benítez-Ahrendts ◽  
M.C. Audisio

The main objective of this study was to determine the impact of Lactobacillus salivarius A3iob, a honey bee gut-associated strain (GenBank code access KX198010), on honey yield. Independent assays were conducted from May to September 2014 and 2015, in three commercial apiaries: Tilquiza, El Carmen and Yala, all located in north-western Argentina. Local Apis mellifera L. bees were kept in standard Langstroth hives; treated hives were fed once a month with 1×105 cfu/ml viable Lactobacillus cells, administered to the bees through a Doolittle-type feeder in 125 g/l sucrose syrup. Control hives were only given the syrup mixed with MRS sterile broth. The main honey harvest was done in December in all groups and we found that there was an overall increase in honey yield from the treated hives. In 2014, all treated hives produced between 2.3 to 6.5 times more honey than the controls. However, in 2015, higher honey average yields in the treated hives at El Carmen and Yala were obtained, yet not at Tilquiza, because of a slight mishap. They experienced the swarming of several bee colonies due to a higher number of bees without appropriate management, which caused the control group to yield more honey compared to the hives fed with Lactobacillus. Interestingly, at El Carmen, two honey harvests were recorded: one in winter and another in summer (July and December 2015, respectively). This unexpected result arose from the particular flora of the region, mainly Tithonia tubaeformis, which blooms in winter. L. salivarius A3iob cells prove to be a natural alternative that will positively impact the beekeepers’ economy by providing a higher honey yield.


1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


2018 ◽  
pp. 83-87
Author(s):  
Marianna Takács ◽  
János Oláh

An apiary trial was conducted in 2016 August to October in Szabolcs-Szatmár-Bereg County, Nyírmada to evaluate the influence of queen’s age on the Varroa destructor-burden in the treatment colonies. Sixty colonies of bees belonging to the subspecies Apis mellifera carnica pannonica in Hunor loading hives (with 10 frames in the brood chamber/deep super) were used. The colonies were treated with amitraz and the organophosphate pesticide coumaphos active ingredients. The amitraz treatment includes 6 weeks. The coumaphos treatment with Destructor 3.2% can be used for both diagnosis and treatment of Varroasis. For diagnosis, one treatment is sufficient. For control, two treatments at an interval of seven days are required. The colonies were grouped by the age of the queen: 20 colonies with one-year-old, 20 colonies with two-year-old and 20 colonies with three-year-old queen. The mite mortality of different groups was compared. The number of fallen mites was counted at the white bottom boards. The examination of spring growth of honey bee colonies has become necessary due to the judgement of efficiency of closing treatment. The data was recorded seven times between 16th March 2017 and 19th May 2017. Data on fallen mites were subjected to one-way analysis of variance (ANOVA) and Post-Hoc Tukey-test. Statistical analysis was performed using the software of IBM SPSS (version 21.). During the first two weeks after treatments, the number of fallen mites was significantly higher in the older queen’s colonies (Year 2014). The total mite mortality after amitraz treatment in the younger queen’s colonies was lower (P<0.05) compared to the three-year-old queen’s colonies. According to Takács and Oláh (2016) although the mitemortality tendency, after the coumaphos (closing) treatment in colonies which have Year 2014 queen showed the highest rate, considering the mite-burden the colonies belongs to the average infected category. The colonial maintenance ability of three-year-old queen cannot be judged based on the influencing effect on the mite-burden. The importance of the replacement of the queen was judged by the combined effect of several factors. During the spring-growth study (16th March–19th May) was experienced in the three-year-old queen’s colonies the number of brood frames significantly lower compared to the one- and two-year-old queen’s colonies. In the study of 17th April and 19th May each of the three queen-year-groups were varied. Therefore in the beekeeping season at different times were determined the colonial maintenance ability of queens by more factors: efficiency of closing treatment in early spring, the spring-growth of bee colonies, the time of population shift (in current study, this time was identical in each queen-year), honey production (from black locust).


Author(s):  
Erubiel Toledo-Hernández ◽  
Jaime Hernández-Flores ◽  
César Sotelo-Leyva ◽  
Andrés Alvear-García ◽  
Guadalupe Peña-Chora

2015 ◽  
Vol 48 (2) ◽  
pp. 99-108 ◽  
Author(s):  
H.F. Abou-Shaara

AbstractThere are various plants with potential feeding importance to honey bee, Apis mellifera, colonies as source of pollen, nectar or both. Selection of suitable regions for apiaries mainly depends on the availability of honey bee plants in the apiary region. Identifying honey bee plants in specific region is very essential for honey and pollen production from honey bee colonies. Lacking the information about the beneficial plants for honey bees including; plant name, flowering time and potential benefit to honey bee colonies could be considered as a limitation for beekeeping development. So far honey bee plants are not well studied in Egypt. This review paper presents potential honey bee plants in Egypt using the available publications. The studies on honey bee plants in Egypt were also reviewed. This work can be considered as a guide for beekeepers and researchers. Moreover, the presented plants here can be used in comparing honey bee plants of Egypt with other countries to get a better understanding of honey bee flora. More detailed investigations on honey bee plants are strongly required to be done at all Egyptian Governorates


Sign in / Sign up

Export Citation Format

Share Document