scholarly journals Effects of Soil Properties, Temperature and Disturbance on Diversity and Functional Composition of Plant Communities Along a Steep Elevational Gradient on Tenerife

2021 ◽  
Vol 9 ◽  
Author(s):  
Amanda Ratier Backes ◽  
Larissa Frey ◽  
José Ramón Arévalo ◽  
Sylvia Haider

Elevational variation of vegetation has been of interest for centuries, and a prominent example for such pronounced vegetation changes can be found along the steep elevational gradient on Tenerife, Canary Islands, 200 km off the West-African cost. The 3,718-m ascent to the peak of the island volcano, Teide, offers a unique opportunity to investigate associated changes in vegetation. However, elevation is not a directly acting factor, but represents several natural environmental gradients. While the elevational variation of temperature is globally rather uniform and temperature effects on plant communities are well understood, much less is known about the region-specific elevational change of chemical soil properties and their impact on plant communities along elevational gradients. Because human interference takes place even at high-elevation areas, we considered human-induced disturbance as important third factor acting upon plant community assemblages. In our study, we compared the effects of soil properties, temperature and disturbance on species richness, functional identity and functional diversity of plant communities along the elevational gradient on Tenerife. We used pairs of study plots: directly adjacent to a road and in natural vegetation close by. In each plot, we did vegetation relevées, took soil samples, and installed temperature loggers. Additionally, we collected leaf samples to measure leaf functional traits of 80% of the recorded species. With increasing elevation, soil cation concentrations, cation exchange capacity (CEC) and pH decreased significantly, while the soil carbon to phosphorus ratio slightly peaked at mid-elevations. Temperature had the strongest effects, increasing species richness and favoring communities with fast resource acquisition. Species richness was higher at road verges, indicating the positive effect of reduced competition and artificially generated heterogeneity. However, we did not detect road effects on plant functional characteristics. Vice versa, we did not find soil effects on species richness, but increased concentrations of soil cations favored acquisitive communities. Surprisingly, we could not reveal any influence on community functional diversity. The importance of temperature aligns with findings from large-scale biogeographic studies. However, our results also emphasize that it is necessary to consider the effects of local abiotic drivers, like soil properties and disturbance, to understand variation in plant communities.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin U. Grüebler ◽  
Johann von Hirschheydt ◽  
Fränzi Korner-Nievergelt

AbstractThe formation of an upper distributional range limit for species breeding along mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empirical understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at elevations lower than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.


2018 ◽  
Vol 20 (1) ◽  
pp. 129 ◽  
Author(s):  
Eduardo De Rodrigues Coelho ◽  
Adriano Pereira Paglia ◽  
Arleu Barbosa Viana-Junior ◽  
Luiz A. Dolabela Falcão ◽  
Guilherme B. Ferreira

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 511 ◽  
Author(s):  
Ji-Hua Wang ◽  
Yan-Fei Cai ◽  
Lu Zhang ◽  
Chuan-Kun Xu ◽  
Shi-Bao Zhang

Knowledge about how species richness varies along spatial and environmental gradients is important for the conservation and use of biodiversity. The Ericaceae is a major component of alpine and subalpine vegetation globally. However, little is known about the spatial pattern of species richness and the factors that drive that richness in Ericaceae. We investigated variation in species richness of Ericaceae along an elevational gradient in Yunnan, China, and used a variation partitioning analysis based on redundancy analysis ordination to examine how those changes might be influenced by the mid-domain effect, the species-area relationship, and climatic variables. Species richness varied significantly with elevation, peaking in the upper third of the elevational gradient. Of the factors examined, climate explained a larger proportion of the variance in species richness along the elevational gradient than either land area or geometric constraints. Species richness showed a unimodal relationship with mean annual temperature and mean annual precipitation. The elevational pattern of species richness for Ericaceae was shaped by the combined effects of climate and competition. Our findings contribute to a better understanding of the potential effects of climate change on species richness for Ericaceae.


The Auk ◽  
2021 ◽  
Author(s):  
Flavia A Montaño-Centellas ◽  
Harrison H Jones

Abstract Mixed-species flocks constitute community modules that can help test mechanisms driving changes to community composition across environmental gradients. Here, we examined elevational patterns of flock diversity (species richness, taxonomic diversity, species, and guild composition) and asked if these patterns were reflections of the full bird community at a given elevation (open-membership hypothesis), or if they were instead structured by environmental variables. We surveyed both the overall avian community and mixed-species flocks across an undisturbed elevational gradient (~1,350–3,550 m) in the Bolivian Andes. We then tested for the role of temperature (a surrogate for abiotic stress), resource diversity (arthropods, fruits), and foraging niche diversity (vegetation vertical complexity) in structuring these patterns. Patterns for the overall and flocking communities were similar, supporting our open-membership hypothesis that Andean flocks represent dynamic, unstructured aggregations. Membership openness and the resulting flock composition, however, also varied with elevation in response to temperature and vegetation complexity. We found a mid-elevation peak in flock species richness, size, and Shannon’s diversity at ~2,300 m. The transition of flocking behavior toward a more open-membership system at this elevation may explain a similar peak in the proportion of insectivores joining flocks. At high elevations, increasing abiotic stress and decreasing fruit diversity led more generalist, gregarious tanagers (Thraupidae) to join flocks, resulting in larger yet more even flocks alongside a loss of vegetation structure. At lower elevations, flock species richness increased with greater vegetation complexity, but a greater diversity of foraging niches resulted in flocks that were more segregated into separate canopy and understory sub-types. This segregation likely results from increased costs of interspecific competition and activity matching (i.e., constraints on movement and foraging rate) for insectivores. Mid-elevation flocks (~2,300 m) seemed, therefore, to benefit from both the open-membership composition of high-elevation flocks and the high vegetation complexity of mid- and low-elevation forests.


2019 ◽  
Vol 15 (10) ◽  
pp. 20190493 ◽  
Author(s):  
T. Edward Roberts ◽  
Sally A. Keith ◽  
Carsten Rahbek ◽  
Tom C. L. Bridge ◽  
M. Julian Caley ◽  
...  

Natural environmental gradients encompass systematic variation in abiotic factors that can be exploited to test competing explanations of biodiversity patterns. The species–energy (SE) hypothesis attempts to explain species richness gradients as a function of energy availability. However, limited empirical support for SE is often attributed to idiosyncratic, local-scale processes distorting the underlying SE relationship. Meanwhile, studies are also often confounded by factors such as sampling biases, dispersal boundaries and unclear definitions of energy availability. Here, we used spatially structured observations of 8460 colonies of photo-symbiotic reef-building corals and a null-model to test whether energy can explain observed coral species richness over depth. Species richness was left-skewed, hump-shaped and unrelated to energy availability. While local-scale processes were evident, their influence on species richness was insufficient to reconcile observations with model predictions. Therefore, energy availability, either in isolation or in combination with local deterministic processes, was unable to explain coral species richness across depth. Our results demonstrate that local-scale processes do not necessarily explain deviations in species richness from theoretical models, and that the use of idiosyncratic small-scale factors to explain large-scale ecological patterns requires the utmost caution.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 479 ◽  
Author(s):  
Hanif ◽  
Guo ◽  
Moniruzzaman ◽  
He ◽  
Yu ◽  
...  

Plant attributes have direct and indirect effects on soil microbes via plant inputs and plant-mediated soil changes. However, whether plant taxonomic and functional diversities can explain the soil microbial diversity of restored forest ecosystems remains elusive. Here, we tested the linkage between plant attributes and soil microbial communities in four restored forests (Acacia species, Eucalyptus species, mixed coniferous species, mixed native species). The trait-based approaches were applied for plant properties and high-throughput Illumina sequencing was applied for fungal and bacterial diversity. The total number of soil microbial operational taxonomic units (OTUs) varied among the four forests. The highest richness of fungal OTUs was found in the Acacia forest. However, bacterial OTUs were highest in the Eucalyptus forest. Species richness was positively and significantly related to fungal and bacterial richness. Plant taxonomic diversity (species richness and species diversity) explained more of the soil microbial diversity than the functional diversity and soil properties. Prediction of fungal richness was better than that of bacterial richness. In addition, root traits explained more variation than the leaf traits. Overall, plant taxonomic diversity played a more important role than plant functional diversity and soil properties in shaping the soil microbial diversity of the four forests.


Koedoe ◽  
1997 ◽  
Vol 40 (1) ◽  
Author(s):  
H.C. Eckhardt ◽  
N. Van Rooyen ◽  
G.J. Bredenkamp

An analysis of the woody vegetation of northern KwaZulu-Natal is presented. Releves were compiled in 102 stratified random sample plots. A TWINSPAN classification, refined by Braun-Blanquet procedures, revealed 24 plant communities, also referred to as vegetation units. For each of these vegetation units, the species richness was determined. Four associations were identified which have a conservation importance. An ordination (DECORANA), based on floristic data, revealed the position of the syntaxa on environmental gradients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomás A. Altamirano ◽  
Devin R. de Zwaan ◽  
José Tomás Ibarra ◽  
Scott Wilson ◽  
Kathy Martin

Abstract Mountains produce distinct environmental gradients that may constrain or facilitate both the presence of avian species and/or specific combinations of functional traits. We addressed species richness and functional diversity to understand the relative importance of habitat structure and elevation in shaping avian diversity patterns in the south temperate Andes, Chile. During 2010–2018, we conducted 2202 point-counts in four mountain habitats (successional montane forest, old-growth montane forest, subalpine, and alpine) from 211 to 1,768 m in elevation and assembled trait data associated with resource use for each species to estimate species richness and functional diversity and turnover. We detected 74 species. Alpine specialists included 16 species (22%) occurring only above treeline with a mean elevational range of 298 m, while bird communities below treeline (78%) occupied a mean elevational range of 1,081 m. Treeline was an inflection line, above which species composition changed by 91% and there was a greater turnover in functional traits (2–3 times greater than communities below treeline). Alpine birds were almost exclusively migratory, inhabiting a restricted elevational range, and breeding in rock cavities. We conclude that elevation and habitat heterogeneity structure avian trait distributions and community composition, with a diverse ecotonal sub-alpine and a distinct alpine community.


2021 ◽  
Author(s):  
Martin Grüebler ◽  
Johann von Hirschheydt ◽  
Fränzi Korner-Nievergelt

Abstract The formation of the upper distributional range limit of species at mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empiric understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at lower elevations than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.


Sign in / Sign up

Export Citation Format

Share Document