scholarly journals Stemflow Infiltration Hotspots Create Soil Microsites Near Tree Stems in an Unmanaged Mixed Beech Forest

2021 ◽  
Vol 4 ◽  
Author(s):  
Johanna Clara Metzger ◽  
Janett Filipzik ◽  
Beate Michalzik ◽  
Anke Hildebrandt

In stemflow, rainfall is collected and channeled to a concentrated soil water input. It can constitute up to 30% of incident precipitation in some ecosystems. However, the size of the zone influenced by stemflow is unclear, and statistically representative measurement of stemflow (on and in between sites) is scarce. Therefore, whether stemflow creates hotspots of infiltration and potential impacts on forest soils remain subject to controversy. In this study, we investigated the areal dimension of infiltrating stemflow fluxes as well as effects on near-stem soils. We measured throughfall, stemflow and soil properties in high-resolution statistical designs on a mixed forest plot in Germany receiving moderate stemflow. From this data, we modeled the spatial distribution of net precipitation infiltration depth on the plot. Furthermore, we examined soil chemical and physical properties around tree stems to test for and assess a stemflow impact. Results show that stemflow infiltration areas are much smaller than typically assumed and constitute strong infiltration hotspots compared to throughfall. This is also mirrored in soil properties, which are significantly altered near stems. Here, accelerated soil formation and enhanced translocation processes indicate increased soil water fluxes due to high inputs. Additionally, altered soil hydraulic properties enable quicker soil water fluxes near stems. Our findings attest that even comparatively low stemflow fractions (of gross precipitation) can generate strong hotspots of water and matter inputs, which are impactful to subsequent hydrological and biogeochemical processes and properties. Trees shape their direct soil environment, thereby establishing pathways of preferential water flow connecting the canopy and the deeper subsurface.

2021 ◽  
Author(s):  
Johanna Clara Metzger ◽  
Janett Filipzik ◽  
Beate Michalzik ◽  
Anke Hildebrandt

<p>Stemflow can form hotspots of precipitation in forests. The stemflow funneling ratio describes the degree of concentration compared to open land rainfall in reference to the tree basal area. But how strongly does stemflow actually concentrate at the point of precipitation input to the soil? This depends on the size of stemflow infiltration areas. Findings hereon vary widely, as they refer to different tree and rainfall characteristics. Furthermore, due to little representative data on stemflow and the separate evaluation of stemflow and throughfall, the importance of stemflow as a hotspot is still subject to controversy. Using an extensive and representative field data set, we want to investigate the effect of stemflow on soil infiltration and percolation. Measurements were conducted on a 1-ha mixed beech forest plot in central Germany with intermediate stemflow generation. In high-resolution statistical designs, stand precipitation (stemflow, n = 65, and throughfall, n = 350) were recorded during three summers, and soil undisturbed (n = 420) and disturbed (n = 100) samples were taken and analyzed for physical and chemical properties. We calculated the spatial distribution of infiltration from stand precipitation data, rain intensity and soil infiltration capacity. Soil properties near stems (< 1m) and farther away were compared to determine a stemflow impact. Results show that stemflow infiltration areas are very small. Stemflow funneling at infiltration exceeds the conventional funneling ratio. Therefore, infiltration depth (L m<sup>-2</sup>) within stemflow infiltration areas is multiples of throughfall, even at dripping points. Soil properties close to trees are significantly different from the bulk soil, suggesting an accelerated soil formation process and a more developed soil structure. Stemflow-induced high soil water fluxes can be identified as an important driver for this pattern. Thus, the hotspot character of stemflow is confirmed by our findings. Stemflow-induced hotspots persist during infiltration and percolation. What is more, they have a direct and significant impact on the soil environment. Soil hydraulic properties facilitate quick water fluxes near stems. Such, trees might establish water flux bypasses from the canopy to the deeper subsurface.</p>


2017 ◽  
Vol 31 (22) ◽  
pp. 3783-3795 ◽  
Author(s):  
Johanna Clara Metzger ◽  
Thomas Wutzler ◽  
Nicolas Dalla Valle ◽  
Janett Filipzik ◽  
Christoph Grauer ◽  
...  

Soil Research ◽  
2016 ◽  
Vol 54 (8) ◽  
pp. 914 ◽  
Author(s):  
N. Pahlevan ◽  
M. R. Yazdani ◽  
A. A. Zolfaghari ◽  
M. Ghodrati

Physical and hydraulic properties of soil are variable at different spatial scales. This indicates the necessity of understanding spatial patterns of soil properties. Scaling analysis, such as multifractal analysis, has been used to determine the spatial variability of soil properties. There are however limited numbers of studies concerning the applications of multifractal techniques applied to characterise spatial variability of soil properties in arid lands. The objective of this study was to quantify the scaling patterns of soil properties measured across a transect and to apply multifractal analysis in arid land areas. A transect with a length of 4.80km was selected, and soil properties were measured at 0–20cm depth every 145m along the transect. The soil properties analysed were: texture (sand, silt, clay), pH, electrical conductivity (EC), bulk density (BD), soil hydraulic properties (saturated hydraulic conductivity Ks and the van Genuchten soil water-retention equation’s parameters nv and αv), saturated water content (θs), and the slope of the soil water-retention curve at its inflection point (S). Results showed that the variability of pH and BD was characterised by quasi-monofractal behaviour. Results showed that soil hydraulic properties such as Ks, αn, nv, S, and θs were characterised by higher multifractal indices in the transects. EC showed the highest tendency to a multifractal type of scaling or the higher degree of multifractality.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 218
Author(s):  
Cameron M. Ogilvie ◽  
Waqar Ashiq ◽  
Hiteshkumar B. Vasava ◽  
Asim Biswas

Plant roots are an integral part of soil ecosystems and contribute to various services, including carbon and nutrient cycling, weathering, and soil formation. They also modify soil physical properties (e.g., soil water content, pore size distribution, and bulk density) and impact subsequent crops’ growth. Cover crops have been reported to improve soil and environmental quality by reducing nutrient losses, improving soil water content, and increasing soil organic matter. Understanding the complex interactions between cover crop roots and soil (RS) is of utmost importance. However, cover crop RS interactions have not been critically reviewed. In this article, we investigated the nature of cover crop physical RS interactions and explored the emerging technologies for their study. We also assessed technologies that may be readily applied to the study of physical RS interactions in cover crop systems and discussed ways to improve related research in the future.


2014 ◽  
Vol 184 ◽  
pp. 243-256 ◽  
Author(s):  
Lingli He ◽  
Valeriy Y. Ivanov ◽  
Gil Bohrer ◽  
Kyle D. Maurer ◽  
Christoph S. Vogel ◽  
...  

Trees ◽  
2011 ◽  
Vol 25 (5) ◽  
pp. 885-894 ◽  
Author(s):  
Marion Zapater ◽  
Christian Hossann ◽  
Nathalie Bréda ◽  
Claude Bréchet ◽  
Damien Bonal ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Glécio Machado Siqueira ◽  
Jorge Dafonte Dafonte ◽  
Montserrat Valcárcel Armesto ◽  
Ênio Farias França e Silva

The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECadata sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECaand gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECaand clay content (ranging from 0.197 to 0.495, when different ECarecording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECadata sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECaas secondary variable with respect to the use of ordinary kriging.


1996 ◽  
Vol 19 ◽  
pp. 93-114
Author(s):  
Antonio José Teixeira Guerra ◽  
Rosangela Garrido Machado Botelho

This paper regards the role of soil characteristics and properties on pedological surveys and soil erosion investigations. Therefore, the main factors of soil formation are here discussed. Furthermore, the main chemical and physical soil properties are also taken into consideration, in order to approach this subject. Finally, some erosion processes are also carried out, together with the main erosion forms and the environmental impacts caused by these associated processes.


Sign in / Sign up

Export Citation Format

Share Document