scholarly journals Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae

2021 ◽  
Vol 2 ◽  
Author(s):  
Anna K. Atanasoff-Kardjalieff ◽  
Friederike Lünne ◽  
Svetlana Kalinina ◽  
Joseph Strauss ◽  
Hans-Ulrich Humpf ◽  
...  

The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.

2014 ◽  
Vol 27 (6) ◽  
pp. 557-566 ◽  
Author(s):  
Shuai Hu ◽  
Xiaoying Zhou ◽  
Xiaoying Gu ◽  
Shulin Cao ◽  
Chengfang Wang ◽  
...  

Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.


2016 ◽  
Vol 29 (11) ◽  
pp. 889-901 ◽  
Author(s):  
Ely Oliveira-Garcia ◽  
Holger B. Deising

Glycosylphosphatidylinositol (GPI) anchoring of proteins is one of the most common posttranslational modifications of proteins in eukaryotic cells and is important for associating proteins with the cell surface. In fungi, GPI-anchored proteins play essential roles in cross-linking of β-glucan cell-wall polymers and cell-wall rigidity. GPI-anchor synthesis is successively performed at the cytoplasmic and the luminal face of the ER membrane and involves approximately 25 proteins. While mutagenesis of auxiliary genes of this pathway suggested roles of GPI-anchored proteins in hyphal growth and virulence, essential genes of this pathway have not been characterized. Taking advantage of RNA interference (RNAi) we analyzed the function of the three essential genes GPI12, GAA1 and GPI8, encoding a cytoplasmic N-acetylglucosaminylphosphatidylinositol deacetylase, a metallo-peptide-synthetase and a cystein protease, the latter two representing catalytic components of the GPI transamidase complex. RNAi strains showed drastic cell-wall defects, resulting in exploding infection cells on the plant surface and severe distortion of in planta–differentiated infection hyphae, including formation of intrahyphal hyphae. Reduction of transcript abundance of the genes analyzed resulted in nonpathogenicity. We show here for the first time that the GPI synthesis genes GPI12, GAA1, and GPI8 are indispensable for vegetative development and pathogenicity of the causal agent of maize anthracnose, Colletotrichum graminicola.


2012 ◽  
Vol 78 (12) ◽  
pp. 4468-4480 ◽  
Author(s):  
Lena Studt ◽  
Philipp Wiemann ◽  
Karin Kleigrewe ◽  
Hans-Ulrich Humpf ◽  
Bettina Tudzynski

ABSTRACTFusarium fujikuroiproduces a variety of secondary metabolites, of which polyketides form the most diverse group. Among these are the highly pigmented naphthoquinones, which have been shown to possess different functional properties for the fungus. A group of naphthoquinones, polyketides related to fusarubin, were identified inFusariumspp. more than 60 years ago, but neither the genes responsible for their formation nor their biological function has been discovered to date. In addition, although it is known that the sexual fruiting bodies in which the progeny of the fungus develops are darkly colored by a polyketide synthase (PKS)-derived pigment, the structure of this pigment has never been elucidated. Here we present data that link the fusarubin-type polyketides to a defined gene cluster, which we designatefsr, and demonstrate that the fusarubins are the pigments responsible for the coloration of the perithecia. We studied their regulation and the function of the single genes within the cluster by a combination of gene replacements and overexpression of the PKS-encoding gene, and we present a model for the biosynthetic pathway of the fusarubins based on these data.


1999 ◽  
Vol 262 (1) ◽  
pp. 46-54 ◽  
Author(s):  
G. M. Truesdell ◽  
C. Jones ◽  
T. Holt ◽  
G. Henderson ◽  
M. B. Dickman

2005 ◽  
Vol 18 (3) ◽  
pp. 244-253 ◽  
Author(s):  
Thomas F. C. Chin-A-Woeng ◽  
Daan van den Broek ◽  
Ben J. J. Lugtenberg ◽  
Guido V. Bloemberg

The rhizobacterium Pseudomonas chlororaphis PCL1391 produces the antifungal metabolite phenazine-1-carboxamide (PCN), which is a crucial trait in its competition with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici in the rhizosphere. The expression of the PCN biosynthetic gene cluster in PCL1391 is population density-dependent and is regulated by the quorum-sensing genes phzI and phzR via synthesis of the autoinducer Nhexanoyl-L-homoserine lactone (C6-HSL). Here, we describe the identification of an additional regulatory gene of PCN biosynthesis in PCL1391. A mutation in the psrA gene (Pseudomonas sigma regulator), the gene product of which is a member of the TetR/AcrR family of transcriptional regulators, resulted in increased production of autoinducer molecules and PCN. Expression studies showed that inactivation of psrA resulted in increased expression of the phzI and phzR genes and the phz biosynthetic operon and that introduction of functional copies of psrA represses the expression of these genes, resulting in reduced production of autoinducer signal and PCN. Surprisingly, inactivation of psrA in the phzI or phzR quorum-sensing mutants, which do not produce detectable amounts of PCN and autoinducers by themselves, restored PCN biosynthesis. This phenomenon was accompanied by the appearance of compounds with autoinducer activities migrating at the positions of C4-HSL and C6-HSL on C18 reverse phase-thin-layer chromatography. These observations indicate that PsrA also represses at least one silent, yet unidentified, quorum-sensing system or autoinducer biosynthetic pathway in PCL1391. The expression of psrA declines at the onset of the stationary phase at the same moment at which quorum-sensing (-regulated) genes are activated. In addition, expression studies in a psrA- and a multicopy psrA background showed that psrA is autoregulated. Multiple copies of psrA repress its own expression. Mutation of gacS, encoding the sensor kinase member of a two-component global regulatory system significantly reduced production of autoinducers and PCN. We show a novel link between global regulation and quorum sensing via the PsrA regulator.


2008 ◽  
Vol 75 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Roberto Rodríguez-Ortiz ◽  
M. Carmen Limón ◽  
Javier Avalos

ABSTRACT The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.


2011 ◽  
Vol 48 (8) ◽  
pp. 784-792 ◽  
Author(s):  
Jaeduk Goh ◽  
Kyoung Su Kim ◽  
Jaejin Park ◽  
Junhyun Jeon ◽  
Sook-Young Park ◽  
...  

2001 ◽  
Vol 14 (3) ◽  
pp. 300-307 ◽  
Author(s):  
Marie Dufresne ◽  
Anne E. Osbourn

Although plant diseases are usually characterized by the part of the plant that is affected (e.g., leaf spots, root rots, wilts), surprisingly little is known about the factors that condition the ability of pathogens to colonize different plant tissues. Here we demonstrate that the leaf blast pathogen Magnaporthe grisea also can infect plant roots, and we exploit this finding to distinguish tissue-specific and general requirements for plant infection. Tests of a M. grisea mutant collection identified some mutants that were defective specifically in infection of either leaves or roots, and others such as the map kinase mutant pmk1 that were generally defective in pathogenicity. Conservation of a functional PMK1-related MAP kinase in the root pathogen Gaeumannomyces graminis was also demonstrated. Exploitation of the ability of M. grisea to infect distinct plant tissues thus represents a powerful tool for the comprehensive dissection of genetic determinants of tissue specificity and global requirements for plant infection.


2012 ◽  
Vol 78 (20) ◽  
pp. 7258-7266 ◽  
Author(s):  
Violeta Díaz-Sánchez ◽  
Javier Avalos ◽  
M. Carmen Limón

ABSTRACTFusarins are a class of mycotoxins of the polyketide family produced by differentFusariumspecies, including the gibberellin-producing fungusFusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in otherFusariumstrains, we have identified theF. fujikuroiorthologue, calledfusA. The participation offusAin fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by thefusAmRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of thefusAgene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, thefusAmutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions inFusarium oxysporum. ThefusAmutants, however, are not affected in their capacities to grow on plant tissues.


Sign in / Sign up

Export Citation Format

Share Document