scholarly journals Regulation of Carotenogenesis and Secondary Metabolism by Nitrogen in Wild-Type Fusarium fujikuroi and Carotenoid-Overproducing Mutants

2008 ◽  
Vol 75 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Roberto Rodríguez-Ortiz ◽  
M. Carmen Limón ◽  
Javier Avalos

ABSTRACT The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.

2013 ◽  
Vol 79 (8) ◽  
pp. 2777-2788 ◽  
Author(s):  
Marta Castrillo ◽  
Jorge García-Martínez ◽  
Javier Avalos

ABSTRACTDASH (Drosophila,Arabidopsis,Synechocystis, human) cryptochromes (cry-DASHs) constitute a subgroup of the photolyase cryptochrome family with diverse light-sensing roles, found in most taxonomical groups. The genome ofFusarium fujikuroi, a phytopathogenic fungus with a rich secondary metabolism, contains a gene encoding a putative cry-DASH, named CryD. The expression of thecryDgene is induced by light in the wild type, but not in mutants of the “white collar” genewcoA. Targeted ΔcryDmutants show light-dependent phenotypic alterations, including changes in morphology and pigmentation, which disappear upon reintroduction of a wild-typecryDallele. In addition to microconidia, the colonies of the ΔcryDmutants produced under illumination and nitrogen starvation large septated spores called macroconidia, absent in wild-type colonies. The ΔcryDmutants accumulated similar amounts of carotenoids to the control strain under constant illumination, but produced much larger amounts of bikaverin under nitrogen starvation, indicating a repressing role for CryD in this biosynthetic pathway. Additionally, a moderate photoinduction of gibberellin production was exhibited by the wild type but not by the ΔcryDmutants. The phenotypic alterations of the ΔcryDmutants were only noticeable in the light, as expected from the low expression ofcryDin the dark, but did not correlate with mRNA levels for structural genes of the bikaverin or gibberellin biosynthetic pathways, suggesting the participation of CryD in posttranscriptional regulatory mechanisms. This is the first report on the participation of a cry-DASH protein in the regulation of fungal secondary metabolism.


2012 ◽  
Vol 78 (20) ◽  
pp. 7258-7266 ◽  
Author(s):  
Violeta Díaz-Sánchez ◽  
Javier Avalos ◽  
M. Carmen Limón

ABSTRACTFusarins are a class of mycotoxins of the polyketide family produced by differentFusariumspecies, including the gibberellin-producing fungusFusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in otherFusariumstrains, we have identified theF. fujikuroiorthologue, calledfusA. The participation offusAin fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by thefusAmRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of thefusAgene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, thefusAmutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions inFusarium oxysporum. ThefusAmutants, however, are not affected in their capacities to grow on plant tissues.


2020 ◽  
Vol 9 (1) ◽  
pp. 71
Author(s):  
Julia Marente ◽  
Javier Avalos ◽  
M. Carmen Limón

Carotenoid biosynthesis is a frequent trait in fungi. In the ascomycete Fusarium fujikuroi, the synthesis of the carboxylic xanthophyll neurosporaxanthin (NX) is stimulated by light. However, the mutants of the carS gene, encoding a protein of the RING finger family, accumulate large NX amounts regardless of illumination, indicating the role of CarS as a negative regulator. To confirm CarS function, we used the Tet-on system to control carS expression in this fungus. The system was first set up with a reporter mluc gene, which showed a positive correlation between the inducer doxycycline and luminescence. Once the system was improved, the carS gene was expressed using Tet-on in the wild strain and in a carS mutant. In both cases, increased carS transcription provoked a downregulation of the structural genes of the pathway and albino phenotypes even under light. Similarly, when the carS gene was constitutively overexpressed under the control of a gpdA promoter, total downregulation of the NX pathway was observed. The results confirmed the role of CarS as a repressor of carotenogenesis in F. fujikuroi and revealed that its expression must be regulated in the wild strain to allow appropriate NX biosynthesis in response to illumination.


2006 ◽  
Vol 72 (6) ◽  
pp. 3924-3932 ◽  
Author(s):  
Erik Lys�e ◽  
Sonja S. Klemsdal ◽  
Karen R. Bone ◽  
Rasmus J. N. Frandsen ◽  
Thomas Johansen ◽  
...  

ABSTRACT Zearalenones are produced by several Fusarium species and can cause reproductive problems in animals. Some aurofusarin mutants of Fusarium pseudograminearum produce elevated levels of zearalenone (ZON), one of the estrogenic mycotoxins comprising the zearalenones. An analysis of transcripts from polyketide synthase genes identified in the Fusarium graminearum database was carried out for these mutants. PKS4 was the only gene with an enoyl reductase domain that had a higher level of transcription in the aurofusarin mutants than in the wild type. An Agrobacterium tumefaciens-mediated transformation protocol was used to replace the central part of the PKS4 gene with a hygB resistance gene through double homologous recombination in an F. graminearum strain producing a high level of ZON. PCR and Southern analysis of transformants were used to identify isolates with single insertional replacements of PKS4. High-performance liquid chromatography analysis showed that the PKS4 replacement mutant did not produce ZON. Thus, PKS4 encodes an enzyme required for the production of ZON in F. graminearum. Barley root infection studies revealed no alteration in the pathogenicity of the PKS4 mutant compared to the pathogenicity of the wild type. The expression of PKS13, which is located in the same cluster as PKS4, decreased dramatically in the mutant, while transcription of PKS4 was unchanged. This differential expression may indicate that ZON or its derivatives do not regulate expression of PKS4 and that the PKS4-encoded protein or its product stimulates expression of PKS13. Furthermore, both the lack of aurofusarin and ZON influenced the expression of other polyketide synthases, demonstrating that one polyketide can influence the expression of others.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 528 ◽  
Author(s):  
Obdulia Parra-Rivero ◽  
Marcelo Paes de Barros ◽  
María del Mar Prado ◽  
José-Vicente Gil ◽  
Dámaso Hornero-Méndez ◽  
...  

Neurosporaxanthin (NX) is a carboxylic carotenoid produced by some filamentous fungi, including species of the genera Neurospora and Fusarium. NX biosynthetic genes and their regulation have been thoroughly investigated in Fusarium fujikuroi, an industrial fungus used for gibberellin production. In this species, carotenoid-overproducing mutants, affected in the regulatory gene carS, exhibit an upregulated expression of the NX pathway. Based on former data on a stimulatory effect of nitrogen starvation on carotenoid biosynthesis, we developed culture conditions with carS mutants allowing the production of deep-pigmented mycelia. With this method, we obtained samples with ca. 8 mg NX/g dry mass, in turn the highest concentration for this carotenoid described so far. NX-rich extracts obtained from these samples were used in parallel with carS-complemented NX-poor extracts obtained under the same conditions, to check the antioxidant properties of this carotenoid in in vitro assays. NX-rich extracts exhibited higher antioxidant capacity than NX-poor extracts, either when considering their quenching activity against [O2(1Δg)] in organic solvent (singlet oxygen absorption capacity (SOAC) assays) or their scavenging activity against different free radicals in aqueous solution and in liposomes. These results make NX a promising carotenoid as a possible feed or food additive, and encourage further studies on its chemical properties.


2006 ◽  
Vol 188 (14) ◽  
pp. 5258-5265 ◽  
Author(s):  
Roxane Lahmi ◽  
Eleonora Sendersky ◽  
Alexander Perelman ◽  
Martin Hagemann ◽  
Karl Forchhammer ◽  
...  

ABSTRACT Degradation of the cyanobacterial light-harvesting antenna, the phycobilisome, is a general acclimation response that is observed under various stress conditions. In this study we identified a novel mutant of Synechococcus elongatus PCC 7942 that exhibits impaired phycobilisome degradation specifically during nitrogen starvation, unlike previously described mutants, which exhibit aberrant degradation under nitrogen, sulfur, and phosphorus starvation conditions. The phenotype of the new mutant, AldΩ, results from inactivation of ald (encoding alanine dehydrogenase). AldΩ is deficient in transcription induction of a number of genes during nitrogen starvation. These genes include the “general nutrient stress-related” genes, nblA and nblC, the products of which are essential for phycobilisome degradation. Furthermore, transcripts of several specific nitrogen-responsive genes accumulate at lower levels in AldΩ than in the wild-type strain. In contrast, ald inactivation did not decrease the accumulation of transcripts during sulfur starvation. Transcription of ald is induced upon nitrogen starvation, which is consistent with the ability of wild-type cells to maintain a low cellular content of alanine under these conditions. Unlike wild-type cells, AldΩ accumulates alanine upon nitrogen starvation. Our analyses suggest that alanine dehydrogenase activity is necessary for an adequate cellular response to nitrogen starvation. Decomposition of alanine may be required to provide a sufficient amount of ammonia. Furthermore, the accumulated alanine, or a related metabolite, may interfere with the cues that modulate acclimation during nitrogen starvation. Taken together, our results provide novel information regarding cellular responses to nitrogen starvation and suggest that mechanisms related to nitrogen-specific responses are involved in modulation of a general acclimation process.


2008 ◽  
Vol 74 (24) ◽  
pp. 7790-7801 ◽  
Author(s):  
Christiane Bömke ◽  
Maria C. Rojas ◽  
Peter Hedden ◽  
Bettina Tudzynski

ABSTRACT Fusarium verticillioides (Gibberella fujikuroi mating population A [MP-A]) is a widespread pathogen on maize and is well-known for producing fumonisins, mycotoxins that cause severe disease in animals and humans. The species is a member of the Gibberella fujikuroi species complex, which consists of at least 11 different biological species, termed MP-A to -K. All members of this species complex are known to produce a variety of secondary metabolites. The production of gibberellins (GAs), a group of diterpenoid plant hormones, is mainly restricted to Fusarium fujikuroi (G. fujikuroi MP-C) and Fusarium konzum (MP-I), although most members of the G. fujikuroi species complex contain the GA biosynthesis gene cluster or parts of it. In this work, we show that the inability to produce GAs in F. verticillioides (MP-A) is due to the loss of a majority of the GA gene cluster as found in F. fujikuroi. The remaining part of the cluster consists of the full-length F. verticillioides des gene (Fvdes), encoding the GA4 desaturase, and the coding region of FvP450-4, encoding the ent-kaurene oxidase. Both genes share a high degree of sequence identity with the corresponding genes of F. fujikuroi. The GA production capacity of F. verticillioides was restored by transforming a cosmid with the entire GA gene cluster from F. fujikuroi, indicating the existence of an active regulation system in F. verticillioides. Furthermore, the GA4 desaturase gene des from F. verticillioides encodes an active enzyme which was able to restore the GA production in a corresponding des deletion mutant of F. fujikuroi.


2000 ◽  
Vol 66 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Delphine Lagarde ◽  
Laurent Beuf ◽  
Wim Vermaas

ABSTRACT The psbAII locus was used as an integration platform to overexpress genes involved in carotenoid biosynthesis inSynechocystis sp. strain PCC 6803 under the control of the strong psbAII promoter. The sequences of the genes encoding the yeast isopentenyl diphosphate isomerase (ipi) and theSynechocystis β-carotene hydroxylase (crtR) and the linked Synechocystis genes coding for phytoene desaturase and phytoene synthase (crtP andcrtB, respectively) were introduced intoSynechocystis, replacing the psbAII coding sequence. Expression of ipi, crtR, andcrtP and crtB led to a large increase in the corresponding transcript levels in the mutant strains, showing that the psbAII promoter can be used to drive transcription and to overexpress various genes in Synechocystis. Overexpression of crtP and crtB led to a 50% increase in the myxoxanthophyll and zeaxanthin contents in the mutant strain, whereas the β-carotene and echinenone contents remained unchanged. Overexpression of crtR induced a 2.5-fold increase in zeaxanthin accumulation in the corresponding overexpressing mutant compared to that in the wild-type strain. In this mutant strain, zeaxanthin becomes the major pigment (more than half the total amount of carotenoid) and the β-carotene and echinenone amounts are reduced by a factor of 2. However, overexpression of ipi did not result in a change in the carotenoid content of the mutant. To further alter the carotenoid content of Synechocystis, the crtOgene, encoding β-carotene ketolase, which converts β-carotene to echinenone, was disrupted in the wild type and in the overexpressing strains so that they no longer produced echinenone. In this way, by a combination of overexpression and deletion of particular genes, the carotenoid content of cyanobacteria can be altered significantly.


1999 ◽  
Vol 181 (9) ◽  
pp. 2697-2702 ◽  
Author(s):  
Hyun-Mi Lee ◽  
María Félix Vázquez-Bermúdez ◽  
Nicole Tandeau de Marsac

ABSTRACT The PII protein is encoded by a unique glnBgene in Synechococcus sp. strain PCC 7942. Its expression has been analyzed in the wild type and in NtcA-null mutant cells grown under different conditions of nitrogen and carbon supply. RNA-DNA hybridization experiments revealed the presence of one transcript species 680 nucleotides long, whatever the nutrient conditions tested. A second transcript species, 620 nucleotides long, absent in the NtcA null mutant, was observed in wild-type cells that were nitrogen starved for 2 h under both high and low CO2and in the presence of nitrate under a high CO2concentration. Primer extension analysis indicated that the two transcript species are generated from two tandem promoters, a ς70 Escherichia coli-type promoter and an NtcA-dependent promoter, located 120 and 53 nucleotides, respectively, from the glnB initiation codon. The NtcA-dependent promoter is up-regulated under the conditions mentioned above, while the ς70 E. coli-type promoter displays constitutive levels of transcripts in the NtcA null mutant and slightly different levels in the wild-type cells, depending on the nitrogen and carbon supplies. In general, a good correlation between the amounts of the two transcript species and that of the PII protein was observed, as revealed by immunodetection with specific antibodies. The phosphorylation level of PII in the wild type is inversely correlated with nitrogen availability and directly correlated with higher CO2 concentration. This regulation is correspondingly less stringent in the NtcA null mutant cells. In contrast, the dephosphorylation of PII is NtcA independent.


1991 ◽  
Vol 57 (11) ◽  
pp. 3378-3382 ◽  
Author(s):  
Reyes Candau ◽  
Javier Ávalos ◽  
Enrique Cerdá-Olmedo

Sign in / Sign up

Export Citation Format

Share Document