scholarly journals Deletion of the Capn1 Gene Results in Alterations in Signaling Pathways Related to Alzheimer’s Disease, Protein Quality Control and Synaptic Plasticity in Mouse Brain

2020 ◽  
Vol 11 ◽  
Author(s):  
Wenyue Su ◽  
Qian Zhou ◽  
Yubin Wang ◽  
Athar Chishti ◽  
Qingshun Q. Li ◽  
...  
2020 ◽  
Vol 7 ◽  
Author(s):  
Margreet B. Koopman ◽  
Stefan G. D. Rüdiger

Alzheimer’s Disease is driven by protein aggregation and is characterized by accumulation of Tau protein into neurofibrillary tangles. In healthy neurons the cellular protein quality control is successfully in charge of protein folding, which raises the question to which extent this control is disturbed in disease. Here, we describe that brain cells in Alzheimer’s Disease show very specific derailment of the protein quality control network. We performed a meta-analysis on the Alzheimer’s Disease Proteome database, which provides a quantitative assessment of disease-related proteome changes in six brain regions in comparison to age-matched controls. We noted that levels of all paralogs of the conserved Hsp90 chaperone family are reduced, while most other chaperones – or their regulatory co-chaperones - do not change in disease. The notable exception is a select group consisting of the stress inducible HSP70, its nucleotide exchange factor BAG3 – which links the Hsp70 system to autophagy - and neuronal small heat shock proteins, which are upregulated in disease. They are all members of a cascade controlled in the stress response, channeling proteins towards a pathway of chaperone assisted selective autophagy. Together, our analysis reveals that in an Alzheimer’s brain, with exception of Hsp90, the players of the protein quality control are still present in full strength, even in brain regions most severely affected in disease. The specific upregulation of small heat shock proteins and HSP70:BAG3, ubiquitous in all brain areas analyzed, may represent a last, unsuccessful attempt to advert cell death.


2021 ◽  
Vol 23 (1) ◽  
pp. 345
Author(s):  
Yaping Liu ◽  
Runrong Ding ◽  
Ze Xu ◽  
Yuan Xue ◽  
Dongdong Zhang ◽  
...  

Alzheimer’s disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy–lysosome system (ALS) and the ubiquitin–proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.


Author(s):  
Margreet B. Koopman ◽  
Stefan G.D Rüdiger

Alzheimer’s Disease is driven by protein aggregation and is characterised by accumulation of Tau protein into neurofibrillary tangles. In healthy neurons the cellular protein quality control is successfully in charge of protein folding, which raises the question to which extent this control is disturbed in disease. Here we describe that brain cells in Alzheimer’s Disease show very specific derailment of the protein quality control network. We performed a meta-analysis on the Alzheimer’s Disease Proteasome database, which provides a quantitative assessment of disease-related proteome changes in six brain regions in comparison with age-matched controls. We noted that levels of all paralogues of the conserved Hsp90 chaperone family are reduced, while most other chaperones – or their regulatory co-chaperones – do not change in disease. The notable exception is a select group consisting of the stress inducible HSP70, its nucleotide exchange factor BAG3 – which links the Hsp70 system to autophagy – and neuronal small heat shock proteins, which are upregulated in disease. They are all members of a cascade controlled in the stress response, channelling proteins towards a pathway of chaperone assisted selective autophagy. Together, our analysis reveals that in an Alzheimer’s brain, with exception of Hsp90, the players of the protein quality control are still present in full strength, even in brain regions most severely affected in disease. The specific upregulation of small heat shock proteins and HSP70:BAG3, ubiquitous in all brain areas analysed, may represent a last, unsuccessful attempt to advert neuronal cell death.


Author(s):  
Toru Hosoi ◽  
Jun Nomura ◽  
Koichiro Ozawa ◽  
Akinori Nishi ◽  
Yasuyuki Nomura

AbstractThe endoplasmic reticulum (ER) is an organelle that plays a crucial role in protein quality control such as protein folding. Evidence to indicate the involvement of ER in maintaining cellular homeostasis is increasing. However, when cells are exposed to stressful conditions, which perturb ER function, unfolded proteins accumulate leading to ER stress. Cells then activate the unfolded protein response (UPR) to cope with this stressful condition. In the present review, we will discuss and summarize recent advances in research on the basic mechanisms of the UPR. We also discuss the possible involvement of ER stress in the pathogenesis of Alzheimer’s disease (AD). Potential therapeutic opportunities for diseases targeting ER stress is also described.


Physiology ◽  
2010 ◽  
Vol 25 (3) ◽  
pp. 186-198 ◽  
Author(s):  
Wolfgang A. Linke ◽  
Martina Krüger

The giant muscle protein titin, the “backbone” of the sarcomere, harbors a complex molecular spring whose stiffness is variably tuned in health and disease. Titin is increasingly recognized as a crucial integrator of diverse myocyte signaling pathways. The titin-associated signalosome includes hotspots of protein-protein interactions important for the regulation of protein quality-control mechanisms, hypertrophic gene activation, and mechanosensing.


Sign in / Sign up

Export Citation Format

Share Document