scholarly journals Analysis of Wild Type LbCpf1 Protein, and PAM Recognition Variants, in a Cellular Context

2021 ◽  
Vol 11 ◽  
Author(s):  
Ujin Shin ◽  
Vincent Brondani

Nucleases used in genome engineering induce hydrolysis of DNA phosphate backbone in a sequence-specific manner. So far CRISPR-Cas, the RNA-guided nucleases, is the most advanced genome engineering system. The CRISPR nucleases allows recognition of a particular genomic sequence with two distinct molecular interactions: first, by direct interaction between the nuclease and the protospacer-adjacent motif, wherein discrete amino acids interact with DNA base pairs; and second, by hybridization of the guide RNA with the target DNA sequence. Here we report the application of the single strand annealing cellular assay to analyze and quantify nuclease activity of wild type and mutant CRISPR-Cpf1. Using this heterologous marker system based on GFP activity, we observed a comparable PAM recognition selectivity with the NGS analysis. The heterologous marker system has revealed that LbCpf1 is a more specific nuclease than AsCpf1 in a cellular context. We controlled the in vitro activity of the Cpf1 nuclease complexes expressed in mammalian cells and demonstrated that they are responsible of the DNA cleavage at the target site. In addition, we generated and tested LbCpf1 variants with several combinations of mutations at the PAM-recognition positions G532, K538 and Y542. Finally, we showed that the results of the in vitro DNA cleavage assay with the wild type and mutants LbCpf1 corroborate with the selection of 6TG resistant cells associated to the genomic disruption of hprt gene.

2018 ◽  
Author(s):  
Jarryd M. Campbell ◽  
Ester Perales-Clemente ◽  
Hirotaka Ata ◽  
Noemi Vidal-Folch ◽  
Weibin Liu ◽  
...  

Summary ParagraphMitochondria are a network of critical intracellular organelles with diverse functions ranging from energy production to cell signaling. The mitochondrial genome (mtDNA) consists of 37 genes that support oxidative phosphorylation and are prone to dysfunction that can lead to currently untreatable diseases. Further characterization of mtDNA gene function and creation of more accurate models of human disease will require the ability to engineer precise genomic sequence modifications. To date, mtDNA has been inaccessible to direct modification using traditional genome engineering tools due to unique DNA repair contexts in mitochondria1. Here, we report a new DNA modification process using sequence-specific transcription activator-like effector (TALE) proteins to manipulate mtDNA in vivo and in vitro for reverse genetics applications. First, we show mtDNA deletions can be induced in Danio rerio (zebrafish) using site-directed mitoTALE-nickases (mito-nickases). Using this approach, the protein-encoding mtDNA gene nd4 was deleted in injected zebrafish embryos. Furthermore, this DNA engineering system recreated a large deletion spanning from nd5 to atp8, which is commonly found in human diseases like Kearns-Sayre syndrome (KSS) and Pearson syndrome. Enrichment of mtDNA-deleted genomes was achieved using targeted mitoTALE-nucleases (mitoTALENs) by co-delivering both mito-nickases and mitoTALENs into zebrafish embryos. This combined approach yielded deletions in over 90% of injected animals, which were maintained through adulthood in various tissues. Subsequently, we confirmed that large, targeted deletions could be induced with this approach in human cells. In addition, we show that, when provided with a single nick on the mtDNA light strand, the binding of a terminal TALE protein alone at the intended recombination site is sufficient for deletion induction. This “block and nick” approach yielded engineered mitochondrial molecules with single nucleotide precision using two different targeted deletion sites. This precise seeding method to engineer mtDNA variants is a critical step for the exploration of mtDNA function and for creating new cellular and animal models of mitochondrial disease.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


2001 ◽  
Vol 82 (4) ◽  
pp. 765-773 ◽  
Author(s):  
Andres Merits ◽  
Lidia Vasiljeva ◽  
Tero Ahola ◽  
Leevi Kääriäinen ◽  
Petri Auvinen

The RNA replicase proteins of Semliki Forest virus (SFV) are translated as a P1234 polyprotein precursor that contains two putative autoproteases. Point mutations introduced into the predicted active sites of both proteases nsP2 (P2) and nsP4 (P4), separately or in combination, completely abolished virus replication in mammalian cells. The effects of these mutations on polyprotein processing were studied by in vitro translation and by expression of wild-type polyproteins P1234, P123, P23, P34 and their mutated counterparts in insect cells using recombinant baculoviruses. A mutation in the catalytic site of the P2 protease, C478A, (P2CA) completely abolished the processing of P12CA34, P12CA3 and P2CA3. Co-expression of P23 and P12CA34 in insect cells resulted in in trans cleavages at the P2/3 and P3/4 sites. Co-expression of P23 and P34 resulted in cleavage at the P3/4 site. In contrast, a construct with a mutation in the active site of the putative P4 protease, D6A, (P1234DA) was processed like the wild-type protein. P34 or its truncated forms were not processed when expressed alone. In insect cells, P4 was rapidly destroyed unless an inhibitor of proteosomal degradation was used. It is concluded that P2 is the only protease needed for the processing of SFV polyprotein P1234. Analysis of the cleavage products revealed that P23 or P2 could not cleave the P1/2 site in trans.


Genetics ◽  
1972 ◽  
Vol 72 (2) ◽  
pp. 239-252 ◽  
Author(s):  
F D Gillin ◽  
D J Roufa ◽  
A L Beaudet ◽  
C T Caskey

ABSTRACT Chinese hamster cells were treated with ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine, and mutants resistant to 8-azaguanine were selected and characterized. Hypoxanthine-guanine phosphoribosyltransferase activity of sixteen mutants is extremely negative, making them suitable for reversion to HGPRTase+. Ten of the extremely negative mutants revert at a frequency higher than 10-7 suggesting their point mutational character. The remaining mutants have demonstrable HGPRTase activity and are not useful for reversion analysis. Five of these mutants have < 2% HGPRTase and are presumably also HGPRTase point mutants. The remaining 14 mutants utilize exogenous hypoxanthine for nucleic acid synthesis poorly, and possess 20-150% of wild-type HGPRTase activity in in vitro. Their mechanism of 8-azaguanine resistance is not yet defined.


2020 ◽  
Vol 114 (7) ◽  
pp. 492-498 ◽  
Author(s):  
Gabriele Sass ◽  
Laura C Miller Conrad ◽  
Terrence-Thang H Nguyen ◽  
David A Stevens

Abstract Background Bacteria are sources of numerous molecules used in treatment of infectious diseases. We investigated effects of molecules produced by 26 Pseudomonas aeruginosa strains against infection of mammalian cell cultures with Trypanosoma cruzi, the aetiological agent of Chagas disease. Methods Vero cells were infected with T. cruzi in the presence of wild-type P. aeruginosa supernatants or supernatants of mutants with defects in the production of various virulence, quorum sensing and iron acquisition factors. Quantification of T. cruzi infection (percentage of infected cells) and multiplication (number of amastigotes per infected cell) was performed and cell viability was determined. Results Wild-type P. aeruginosa products negatively affected T. cruzi infection and multiplication in a dose-dependent manner, without evident toxicity for mammalian cells. PvdD/pchE mutation (loss of the P. aeruginosa siderophores pyoverdine and pyochelin) had the greatest impact on anti–T. cruzi activity. Negative effects on T. cruzi infection by pure pyochelin, but not pyoverdine, or other P. aeruginosa exoproducts studied, were quantitatively similar to the effects of benznidazole, the current standard therapy against T. cruzi. Conclusions The P. aeruginosa product pyochelin showed promising activity against T. cruzi and might become a new lead molecule for therapy development.


2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Thomas Jacobsen ◽  
Chunyu Liao ◽  
Chase L Beisel

ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) nuclease Acidaminococcus sp. Cas12a (AsCas12a, also known as AsCpf1) has become a popular alternative to Cas9 for genome editing and other applications. AsCas12a has been associated with a TTTV protospacer-adjacent motif (PAM) as part of target recognition. Using a cell-free transcription-translation (TXTL)-based PAM screen, we discovered that AsCas12a can also recognize GTTV and, to a lesser degree, GCTV motifs. Validation experiments involving DNA cleavage in TXTL, plasmid clearance in Escherichia coli, and indel formation in mammalian cells showed that AsCas12a was able to recognize these motifs, with the GTTV motif resulting in higher cleavage efficiency compared to the GCTV motif. We also observed that the -5 position influenced the activity of DNA cleavage in TXTL and in E. coli, with a C at this position resulting in the lowest activity. Together, these results show that wild-type AsCas12a can recognize non-canonical GTTV and GCTV motifs and exemplify why the range of PAMs recognized by Cas nucleases are poorly captured with a consensus sequence.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


Parasitology ◽  
2005 ◽  
Vol 131 (2) ◽  
pp. 197-206 ◽  
Author(s):  
J.-F. MARQUIS ◽  
I. HARDY ◽  
M. OLIVIER

The bisbenzimidazole compound Hoechst 33342 (Ho342) has been identified as a specific Topoisomerase-I (Topo-I) inhibitor in mammalian cells. More recently, we have reported the ability of Ho342 to targetL. donovaniTopo-I, leading to parasite growth inhibitionin vitroby mechanisms involving DNA breakage and apoptosis-like phenomenon. As the Ho342 lead molecule (2,5′-Bi-1H-benzimidazole) can be used as a starting structure for derivative compounds more effective againstLeishmania, defining the Ho342 resistance mechanism(s) inLeishmaniarepresents an important strategic tool. In the present study, we selected resistant parasites to Ho342 (LdRHo.300). While we observed an increase of the Topo-I gene expression correlated by a higher Topo-I DNA relaxation activity, the Topo-I genes (LdTOP1AandLdTOP1B) sequencing did not reveal any mutation for the resistant parasites. Moreover, our results on Ho342 cellular accumulation suggested the presence of a potential energy-dependent Ho342 transporter in the wild-type parasite, and that an alteration of this transporter has occurred inLdRHo.300, leading to an altered drug accumulation. Collectively, Ho342 resistance characterization provided results supporting that the resistance developed byLdRHo.300involves complex mechanisms, most likely dominated by an altered drug accumulation, providing new insight in the Ho342 resistance mechanisms.


1992 ◽  
Vol 12 (2) ◽  
pp. 758-766 ◽  
Author(s):  
R Ruggieri ◽  
A Bender ◽  
Y Matsui ◽  
S Powers ◽  
Y Takai ◽  
...  

The Saccharomyces cerevisiae ras-like gene RSR1 is particularly closely related to the mammalian gene Krev-1 (also known as smg21A and rap1A). RSR1 was originally isolated as a multicopy suppressor of a cdc24 mutation, which causes an inability to bud or establish cell polarity. Deletion of RSR1 itself does not affect growth but causes a randomization of bud position. We have now constructed mutant alleles of RSR1 encoding proteins with substitutions of Val for Gly at position 12 (analogous to constitutively activated Ras proteins) or Asn for Lys at position 16 (analogous to a dominant-negative Ras protein). rsr1Val-12 could not restore a normal budding pattern to an rsr1 deletion strain but could suppress a cdc24 mutation when overexpressed. rsr1Asn-16 could randomize the budding pattern of a wild-type strain even in low copy number but was not lethal even in high copy number. These and other results suggest that Rsr1p functions only in bud site selection and not in subsequent events of polarity establishment and bud formation, that this function involves a cycling between GTP-bound and GDP-bound forms of the protein, and that the suppression of cdc24 involves direct interaction between Rsr1p[GTP] and Cdc24p. Functional homology between Rsr1p and Krev-1 p21 was suggested by the observations that expression of the latter protein in yeast cells could both suppress a cdc24 mutation and randomize the budding pattern of wild-type cells. As Krev-1 overexpression can suppress ras-induced transformation of mammalian cells, we looked for effects of RSR1 on the S. cerevisiae Ras pathway. Although no suppression of the activated RAS2Val-19 allele was observed, overexpression of rsr1Val-12 suppressed the lethality of strains lacking RAS gene function, apparently through a direct activation of adenyl cyclase. This interaction of Rsr1p with the effector of Ras in S. cerevisiae suggests that Krev-1 may revert ras-induced transformation of mammalian cells by affecting the interaction of ras p21 with its effector.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 717-717
Author(s):  
Nithya Krishnan ◽  
Jeff R. Bailey ◽  
Victoria Summey-Harner ◽  
Claudio Brunstein ◽  
Catherine M. Verfaillie ◽  
...  

Abstract Bcr-Abl, the translocation product of the Philadelphia chromosome implicated in human chronic myelogenous leukemia (CML), is a kinase affecting hematopoietic stem cell (HSC) behavior with respect to proliferation, apoptosis, adhesion and migration. Rho GTPases, particularly the Rac subfamily, have been shown to regulate these same cell functions in normal HSC and also regulate gene expression in many mammalian cells. BCR contains a “GTPase-activating protein” domain and a guanine nucleotide exchange domain, the latter or which is preserved in p210 Bcr-Abl. Since HSC functions regulated by Bcr-Abl and Rac are similar, we studied the potential involvement of Rac activation in Bcr-Abl signaling cascade. Human CML samples demonstrate baseline activation of Rac proteins that is reversed by in vitro treatment with STI571. To study the specific involvement of Rac2, we used a gene targeted mouse model with Rac2 null bone marrow. Using retovirus-mediated gene transfer, we introduced p210 Bcr-Abl in the MSCV vector into wild-type or Rac2−/− HSC/P and studied the behavior of these cells in vitro and in vivo. Irradiated recipient mice injected with LDBM cells transduced with p210 developed a uniformly fatal myeloproliferative syndrome (Median survival: 45 days, N=12), while mice injected with p210 transduced Rac2−/− LDBM cells (N=12, 2 independent exp.) had 100% survival and no development of leukocytosis, splenomegaly or organ infiltration of hematopoietic cells. These data suggest that Rac GTPases are critical for the transformation of HSC by Bcr-Abl and provide an additional therapeutic target for intervention in CML. WILD TYPE Rac 2 −/− Empty Vector MSCV-p210 Empty vector MSCV-p210 *p < 0.01 vs WT-MIEG3, **p< 0.01 vs WT-p210 bcr-abl. Proliferation (CPM) Medium 562 ± 278 16,207± 1605* 819.7 ± 363 3,135.5 ± 498** SCF (100ng/ml) 856 ± 187 23,226 ± 2203* 853.7 ± 524 3,756.8 ± 207** Cytokines (SCF, GCSF, MGDF) 8011± 1412 42,711± 13393* 4833 ±1019 3,614.5 ± 1982** Migration (%) Fibronectin 7 ± 0.4 38 ± 1.9* 0.4 ± 0.0 0.8 ± 0.1** SDF-1α 30 ±2.8 13 ±1.1* 0.5 ± 0.0 0.6 ± 0.0** Adhesion (% ) Fibronectin 76± 2.9 40 ±3* 4 ±0.4 10 ±0.1 **


Sign in / Sign up

Export Citation Format

Share Document