scholarly journals Maintenance of Complex Trait Variation: Classic Theory and Modern Data

2021 ◽  
Vol 12 ◽  
Author(s):  
Evan M. Koch ◽  
Shamil R. Sunyaev

Numerous studies have found evidence that GWAS loci experience negative selection, which increases in intensity with the effect size of identified variants. However, there is also accumulating evidence that this selection is not entirely mediated by the focal trait and contains a substantial pleiotropic component. Understanding how selective constraint shapes phenotypic variation requires advancing models capable of balancing these and other components of selection, as well as empirical analyses capable of inferring this balance and how it is generated by the underlying biology. We first review the classic theory connecting phenotypic selection to selection at individual loci as well as approaches and findings from recent analyses of negative selection in GWAS data. We then discuss geometric theories of pleiotropic selection with the potential to guide future modeling efforts. Recent findings revealing the nature of pleiotropic genetic variation provide clues to which genetic relationships are important and should be incorporated into analyses of selection, while findings that effect sizes vary between populations indicate that GWAS measurements could be misleading if effect sizes have also changed throughout human history.

The Auk ◽  
2000 ◽  
Vol 117 (3) ◽  
pp. 651-662 ◽  
Author(s):  
Corinne Rabouam ◽  
Vincent Bretagnolle ◽  
Yves Bigot ◽  
Georges Periquet

Abstract We used DNA fingerprinting to assess genetic structure of populations in Cory's Shearwater (Calonectris diomedea). We analyzed mates and parent-offspring relationships, as well as the amount and distribution of genetic variation within and among populations, from the level of subcolony to subspecies. We found no evidence of extrapair fertilization, confirming that the genetic breeding system matches the social system that has been observed in the species. Mates were closely related, and the level of genetic relatedness within populations was within the range usually found in inbred populations. In contrast to previous studies based on allozymes and mtDNA polymorphism, DNA fingerprinting using microsatellites revealed consistent levels of genetic differentiation among populations. However, analyzing the two subspecies separately revealed that the pattern of genetic variation among populations did not support the model of isolation by distance. Natal dispersal, as well as historic and/or demographic events, probably contributed to shape the genetic structure of populations in the species.


Parasitology ◽  
2007 ◽  
Vol 135 (3) ◽  
pp. 303-308 ◽  
Author(s):  
T. J. LITTLE ◽  
W. CHADWICK ◽  
K. WATT

SUMMARYUnderstanding genetic relationships amongst the life-history traits of parasites is crucial for testing hypotheses on the evolution of virulence. This study therefore examined variation between parasite isolates (the bacterium Pasteuria ramosa) from the crustacean Daphnia magna. From a single wild-caught infected host we obtained 2 P. ramosa isolates that differed substantially in the mortality they caused. Surprisingly, the isolate causing higher early mortality was, on average, less successful at establishing infections and had a slower growth rate within hosts. The observation that within-host replication rate was negatively correlated with mortality could violate a central assumption of the trade-off hypothesis for the evolution of virulence, but we discuss a number of caveats which caution against premature rejection of the trade-off hypothesis. We sought to test if the characteristics of these parasite isolates were constant across host genotypes in a second experiment that included 2 Daphnia host clones. The relative growth rates of the two parasite isolates did indeed depend on the host genotype (although the rank order did not change). We suggest that testing evolutionary hypotheses for virulence may require substantial sampling of both host and parasite genetic variation, and discuss how selection for virulence may change with the epidemiological state of natural populations and how this can promote genetic variation for virulence.


Botany ◽  
2016 ◽  
Vol 94 (3) ◽  
pp. 201-213
Author(s):  
Anselmo Nogueira ◽  
Pedro J. Rey ◽  
Julio M. Alcántara ◽  
Lúcia G. Lohmann

Extra-floral nectaries (EFNs) are thought to represent protective adaptations against herbivory, but studies on the evolutionary ecology of EFNs have seldom been conducted. Here we investigate the patterns of natural selection and genetic variation in EFN traits in two wild populations of Anemopaegma album Mart. ex DC. (Bignoniaceae) that have been previously described as contrasting EFN – ant adapted localities in the Neotropical savanna (Cristália and Grão Mogol). In each population, four EFN descriptors, foliar damage, and reproductive success variables were measured per plant (100–120 plants per population). To estimate the heritability of EFN traits, we crossed reproductive plants in the field, and grew offspring plants in a common garden. The results showed that ant assemblages differed between populations, as did the range of foliar herbivory. Genetic variation and positive phenotypic selection in EFN abundance were only detected in the Cristália population, in which plants with more EFNs were more likely to reproduce. An evaluation of putative causal links conducted by path analysis corroborated the existence of phenotypic selection on EFNs, which was mediated by the herbivory process in the Cristália population. While EFNs could be currently under selection in Cristália, it is possible that past selection may have driven EFN traits to become locally adapted to the local ant assemblage in the Grão Mogol population.


2011 ◽  
Vol 59 (6) ◽  
pp. 515 ◽  
Author(s):  
Tian Tang ◽  
Lian He ◽  
Feng Peng ◽  
Suhua Shi

Hibiscus tiliaceus L. (Malvaceae) is a pantropical coastal tree that extends to the tidal zone. In this study, the retrotransposon sequence-specific amplified polymorphism (SSAP) technique was used in order to understand the genetic variation between four population pairs of H. tiliaceus from repeated estuarine and inland habitat contrasts in China. The estuarine populations were consistently more genetic variable compared with the inland ones, which may be attributed to extensive gene flow via water-drifted seeds and/or retrotransposon activation in stressful estuarine environments. An AMOVA revealed that 8.9% of the genetic variance could be explained by the habitat divergence within site, as compared with only 4.9% to geographical isolation between sites, which indicates significant habitat differentiation between the estuarine and inland populations. The estuarine populations were less differentiated (ΦST = 0.115) than the inland (ΦST = 0.152) implying frequent gene interchange in the former. Accordingly, the principal coordinate analysis of genetic distance between individuals revealed that genetic relationships are not fully consistent with the geographic association. These results suggest that despite substantial gene flow via sea-drifted seeds, habitat-related divergent selection could be one of the primary mechanisms that drive habitat differentiation in H. tiliaceus at a local ecological scale.


Author(s):  
Thien Minh Nguyen ◽  
Tien Thi My Pham

The agronomic values of this population have been evaluated in the field experiments based on their phenotypic performance of agronomic traits, but the genetic variability of this population needs to be evaluated via techniques based on genetic material - DNA. In this study, the genetic variability in the investigated population of 71 hybrids and their parents was evaluated by RAPD technique, using eight selected arbitrarily primers; Genetic parameters and dendrogram expressing the genetic relationships among the investigated population were analyzed by GenALEx 6.1, Popgene 1.31 and NTSYSpc 2.1 softwares. Eight primers were used to generate the amplify products on each individual in the investigated population. From 74 genotypes, a total of 109 fragments were generated, among which, there were 89 polymorphic bands representing 81.65% with an average of 11 polymorphic bands/primer. Genetic similarity coefficient among the investigated population, based on DICE coefficient, ranged from 0.560 (LH05/0822 and PB260) to 0.991 (LH05/0781 and LH05/0841) with an average of 0,796, meaning that the genetic distance among ranged from 0.009 to 0.440 with an average of 0.231. The Shannon index and mean heterozygosity values were 0.328 and 0,176, respectively. This indicated that the progenies of the two investigated crosses possessed a relatively high range of genetic variability. The analysis of molecular variance (AMOVA) showed that genetic variation within population represented 62%, while genetic variation among two different crosses contributes 38% to the total genetic variability. Dendrogram based on DICE’s genetic similarity using UPGMA method showed that the hybrids divide into two major genetic groups (0.75), but the crosses were scattered independently of the hybrid.


2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


2021 ◽  
Vol 34 ◽  
pp. 3
Author(s):  
Yılmaz Çiftci ◽  
Oğuzhan Eroğlu ◽  
Şirin Firidin ◽  
Hacı Savaş ◽  
Yusuf Bektaş

In this study, the genetic relationships of 804 tarek (Alburnus tarichi) samples from a total of 18 populations, including the potamodromus and resident individuals from Lake Van basin in eastern Turkey, were studied by using nine microsatellite loci. A total of 93 alleles was detected, and the average number of alleles per locus was 10.3 ± 3.39. The mean estimated observed and expected heterozygosity were 0.340 ± 0.016 and 0.362 ± 0.015, respectively, which indicated a low level of polymorphism. After Bonferroni correction (P < 0.0027), the multi-locus test applied to each population revealed that 12 out of 18 populations were in Hardy-Weinberg equilibrium (HWE) (P = 0.0120–0.9981). Analysis of molecular variance (AMOVA) showed more than 76% genetic variability within individuals and 19% among populations, which was significantly higher than zero (FST = 0.19), and furthermore, a low level of genetic variation was observed among individuals within populations (4.84%: FIS = 0.06). Bayesian clustering analysis indicated that the total genetic variation grouped into 3 clusters. Additionally, the significance test results revealed that 11 of the 18 populations are threatened with extinction due to recent bottleneck events.We conclude that the tarek populations from the Lake Van basin can be classified into distinct genetic groups, based on microsatellite information. In addition, our results provide essential information for the development of a management plan that conserves the tarek's genetic diversity and achieves a sustainable fishery.


Sign in / Sign up

Export Citation Format

Share Document