scholarly journals Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System

2017 ◽  
Vol 8 ◽  
Author(s):  
Deepti Pilli ◽  
Alicia Zou ◽  
Fiona Tea ◽  
Russell C. Dale ◽  
Fabienne Brilot
2010 ◽  
Vol 30 (4) ◽  
pp. 311-326 ◽  
Author(s):  
Martina Deckert ◽  
Monica Sanchez-Ruiz ◽  
Anna Brunn ◽  
Dirk Schluter

Author(s):  
Chao Liu ◽  
Guansan Wang ◽  
Hong Liu ◽  
Yue Li ◽  
Jin Li ◽  
...  

Background:Neuromyelitis optica (NMO) and multiple sclerosis (MS) are autoimmune diseases of the central nervous system with complex pathogeneses. NMO was once considered to be a severe variant of MS. There has been more evidence that a non-synonymous exchange (rs763361/Gly307Ser) in the gene for CD226 is linked to several autoimmune diseases including multiple sclerosis (MS). However, no studies have investigated the role of rs763361 in the pathogenesis of NMO.Objectives:The goal of our study is to evaluate the role of CD226 Gly307Ser in neuromyelitis optica (NMO) in Southern Han Chinese.Methods:Eight-nine NMO patients, 93 relapsing-remitting multiple sclerosis (RRMS) patients, and 122 controls (CTLs) were enrolled. The rs763361 alleles of the subjects were determined by sequencing-based typing.Results:The results strongly support that the TT genotypes are associated with NMO but are not significantly correlated with susceptibility for MS.Conclusions:CD226 Gly307Ser may correlate with risk of NMO in Southern Han Chinese.


Virology ◽  
2013 ◽  
Vol 447 (1-2) ◽  
pp. 112-120 ◽  
Author(s):  
Maria Teresa P. de Aquino ◽  
Shweta S. Puntambekar ◽  
Carine Savarin ◽  
Cornelia C. Bergmann ◽  
Timothy W. Phares ◽  
...  

2006 ◽  
Vol 80 (24) ◽  
pp. 12060-12069 ◽  
Author(s):  
Elizabeth M. Sitati ◽  
Michael S. Diamond

ABSTRACT Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4+ T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4+ T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4+ T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4+ T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped ∼20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were ∼100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8+ T-cell activation and trafficking to the CNS were unaffected by the absence of CD4+ T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4+ T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8+ T-cell responses in the CNS that enable viral clearance.


PLoS ONE ◽  
2009 ◽  
Vol 4 (8) ◽  
pp. e6534 ◽  
Author(s):  
Nalini Kumar Vudattu ◽  
Sharon Kuhlmann-Berenzon ◽  
Mohsen Khademi ◽  
Vicki Seyfert ◽  
Thomas Olsson ◽  
...  

2000 ◽  
Vol 74 (17) ◽  
pp. 7903-7910 ◽  
Author(s):  
Norman W. Marten ◽  
Stephen A. Stohlman ◽  
Cornelia C. Bergmann

ABSTRACT The continued presence of virus-specific CD8+ T cells within the central nervous system (CNS) following resolution of acute viral encephalomyelitis implicates organ-specific retention. The role of viral persistence in locally maintaining T cells was investigated by infecting mice with either a demyelinating, paralytic (V-1) or nonpathogenic (V-2) variant of a neurotropic mouse hepatitis virus, which differ in the ability to persist within the CNS. Class I tetramer technology revealed more infiltrating virus-specific CD8+ T cells during acute V-1 compared to V-2 infection. However, both total and virus-specific CD8+ T cells accumulated at similar peak levels in spinal cords by day 10 postinfection (p.i.). Decreasing viral RNA levels in both brains and spinal cords following initial virus clearance coincided with an overall progressive loss of both total and virus-specific CD8+ T cells. By 9 weeks p.i., T cells had largely disappeared from brains of both infected groups, consistent with the decline of viral RNA. T cells also completely disappeared from V-2-infected spinal cords coincident with the absence of viral RNA. By contrast, a significant number of CD8+ T cells which contained detectable viral RNA were recovered from spinal cords of V-1-infected mice. The data indicate that residual virus from a primary CNS infection is a vital component in mediating local retention of both CD8+ and CD4+ T cells and that once minimal thresholds of stimuli are lost, T cells within the CNS cannot survive in an autonomous fashion.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lisa Zondler ◽  
Sebastian Herich ◽  
Petra Kotte ◽  
Katharina Körner ◽  
Tilman Schneider-Hohendorf ◽  
...  

Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to β1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger β1-integrin activation via PLCγ1 upon engagement.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jin Wo ◽  
Feng Zhang ◽  
Zhizhong Li ◽  
Chenghong Sun ◽  
Wencai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document