scholarly journals CD4+ T-Cell Responses Are Required for Clearance of West Nile Virus from the Central Nervous System

2006 ◽  
Vol 80 (24) ◽  
pp. 12060-12069 ◽  
Author(s):  
Elizabeth M. Sitati ◽  
Michael S. Diamond

ABSTRACT Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4+ T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4+ T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4+ T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4+ T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped ∼20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were ∼100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8+ T-cell activation and trafficking to the CNS were unaffected by the absence of CD4+ T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4+ T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8+ T-cell responses in the CNS that enable viral clearance.

2005 ◽  
Vol 79 (17) ◽  
pp. 11457-11466 ◽  
Author(s):  
Robyn S. Klein ◽  
Eugene Lin ◽  
Bo Zhang ◽  
Andrew D. Luster ◽  
Judy Tollett ◽  
...  

ABSTRACT The activation and entry of antigen-specific CD8+ T cells into the central nervous system is an essential step towards clearance of West Nile virus (WNV) from infected neurons. The molecular signals responsible for the directed migration of virus-specific T cells and their cellular sources are presently unknown. Here we demonstrate that in response to WNV infection, neurons secrete the chemokine CXCL10, which recruits effector T cells via the chemokine receptor CXCR3. Neutralization or a genetic deficiency of CXCL10 leads to a decrease in CXCR3+ CD8+ T-cell trafficking, an increase in viral burden in the brain, and enhanced morbidity and mortality. These data support a new paradigm in chemokine neurobiology, as neurons are not generally considered to generate antiviral immune responses, and CXCL10 may represent a novel neuroprotective agent in response to WNV infection in the central nervous system.


2021 ◽  
Vol 7 (25) ◽  
pp. eabg0470
Author(s):  
Jing Zhou ◽  
Xingli Zhang ◽  
Jiajia Hu ◽  
Rihao Qu ◽  
Zhibin Yu ◽  
...  

N6-methyladenosine (m6A) modification is dynamically regulated by “writer” and “eraser” enzymes. m6A “writers” have been shown to ensure the homeostasis of CD4+ T cells, but the “erasers” functioning in T cells is poorly understood. Here, we reported that m6A eraser AlkB homolog 5 (ALKBH5), but not FTO, maintains the ability of naïve CD4+ T cells to induce adoptive transfer colitis. In addition, T cell–specific ablation of ALKBH5 confers protection against experimental autoimmune encephalomyelitis. During the induced neuroinflammation, ALKBH5 deficiency increased m6A modification on interferon-γ and C-X-C motif chemokine ligand 2 messenger RNA (mRNA), thus decreasing their mRNA stability and protein expression in CD4+ T cells. These modifications resulted in attenuated CD4+ T cell responses and diminished recruitment of neutrophils into the central nervous system. Our findings reveal an unexpected specific role of ALKBH5 as an m6A eraser in controlling the pathogenicity of CD4+ T cells during autoimmunity.


2007 ◽  
Vol 293 (3) ◽  
pp. F741-F747 ◽  
Author(s):  
Kathrin Hochegger ◽  
Tobias Schätz ◽  
Philipp Eller ◽  
Andrea Tagwerker ◽  
Dorothea Heininger ◽  
...  

T cells have been implicated in the pathogenesis of renal ischemia-reperfusion injury (IRI). To date existing data about the role of the T cell receptor (Tcr) are contradictory. We hypothesize that the Tcr plays a prominent role in the late phase of renal IRI. Therefore, renal IRI was induced in α/β, γ/δ T cell-deficient and wild-type mice by clamping renal pedicles for 30 min and reperfusing for 24, 48, 72, and 120 h. Serum creatinine increased equally in all three groups 24 h after ischemia but significantly improved in Tcr-deficient animals compared with wild-type controls after 72 h. A significant reduction in renal tubular injury and infiltration of CD4+ T-cells in both Tcr-deficient mice compared with wild-type controls was detected. Infiltration of α/β T cells into the kidney was reduced in γ/δ T cell-deficient mice until 72 h after ischemia. In contrast, γ/δ T cell infiltration was equal in wild-type and α/β T cell-deficient mice, suggesting an interaction between α/β and γ/δ T cells. Data from γ/δ T cell-deficient mice were confirmed by in vivo depletion of γ/δ T cells in C57BL/6 mice. Whereas α/β T cell-deficient mice were still protected after 120 h, γ/δ T cell-deficient mice showed a “delayed wild-type phenotype” with a dramatic increase in kidney-infiltrating α/β, Tcr-expressing CD4+ T-cells. This report provides further evidence that α/β T cells are major effector cells in renal IRI, whereas γ/δ T cells play a role as mediator cells in the first 72 h of renal IRI.


2006 ◽  
Vol 203 (5) ◽  
pp. 1371-1381 ◽  
Author(s):  
Erin Mehlhop ◽  
Michael S. Diamond

West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3−/− and complement receptor 1/2−/− mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.


2002 ◽  
Vol 76 (13) ◽  
pp. 6577-6585 ◽  
Author(s):  
Bong-Su Kang ◽  
Michael A. Lyman ◽  
Byung S. Kim

ABSTRACT Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8+ T-cell response in the CNS that is directed against one dominant (VP3159-166) and two subdominant (VP111-20 and VP3173-181) capsid protein epitopes. These virus-specific CD8+ T cells produce gamma interferon (IFN-γ) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8+ T cells are fully functional effector cells. Intracellular IFN-γ staining analysis indicates that greater than 50% of CNS-infiltrating CD8+ T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2Ks molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.


2006 ◽  
Vol 203 (2) ◽  
pp. 449-459 ◽  
Author(s):  
Honglin Xu ◽  
Taehoon Chun ◽  
Hak-Jong Choi ◽  
Bin Wang ◽  
Chyung-Ru Wang

The major histocompatibility complex (MHC) class Ib molecule H2-M3 primes the rapid expansion of CD8+ T cells by presenting N-formylated bacterial peptides. However, the significance of H2-M3–restricted T cells in host defense against bacteria is unclear. We generated H2-M3–deficient mice to investigate the role of H2-M3 in immunity against Listeria monocytogenes (LM), a model intracellular bacterial pathogen. H2-M3–deficient mice are impaired in early bacterial clearance during primary infection, with diminished LM-specific CD8+ T cell responses and compromised innate immune functions. Although H2-M3–restricted CD8+ T cells constitute a significant proportion of the anti-listerial CD8+ T cell repertoire, the kinetics and magnitude of MHC class Ia–restricted T cell responses are not altered in H2-M3–deficient mice. The fact that MHC class Ia–restricted responses cannot compensate for the H2-M3–mediated immunity suggests a nonredundant role of H2-M3 in the protective immunity against LM. Thus, the early H2-M3–restricted response temporally bridges the gap between innate and adaptive immune responses, subsequently affecting the function of both branches of the immune system.


2017 ◽  
Vol 8 ◽  
Author(s):  
Deepti Pilli ◽  
Alicia Zou ◽  
Fiona Tea ◽  
Russell C. Dale ◽  
Fabienne Brilot

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 485 ◽  
Author(s):  
Sarah Stonedahl ◽  
Penny Clarke ◽  
Kenneth L. Tyler

Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.


Sign in / Sign up

Export Citation Format

Share Document