scholarly journals Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation

2018 ◽  
Vol 9 ◽  
Author(s):  
Jennifer Brasseit ◽  
Cheong K. C. Kwong Chung ◽  
Mario Noti ◽  
Daniel Zysset ◽  
Nina Hoheisel-Dickgreber ◽  
...  
2017 ◽  
Vol 8 ◽  
Author(s):  
Alessandra Geremia ◽  
Carolina V. Arancibia-Cárcamo

2021 ◽  
Author(s):  
Kristi J Warren ◽  
Jill A Poole ◽  
Jenea M Sweeter ◽  
Jane M DeVasure ◽  
John D Dickinson ◽  
...  

Abstract Background: Respiratory viral infections are one of the leading causes of need for emergency care and hospitalizations in asthmatic individuals, and airway-secreted cytokines are released within hours of viral infection to initiate these exacerbations. IL-33, specifically, contributes to these allergic exacerbations by amplifying type 2 inflammation. We hypothesized that blocking IL-33 in RSV-induced exacerbation would significantly reduce allergic inflammation. Methods: Sensitized BALB/c mice were challenged with aerosolized ovalbumin (OVA) to establish allergic inflammation, followed by RSV-A2 infection to yield four treatment groups: Saline only (Saline), RSV-infected alone (RSV), OVA alone (OVA), and OVA-treated with RSV infection (OVA-RSV). Lung outcomes included lung mRNA and protein markers of allergic inflammation, histology for mucus cell metaplasia and lung immune cell influx by cytospin and flow cytometry. Results: While thymic stromal lymphopoietin (TSLP) and IL-33 were detected 6 hours after RSV infection in the OVA-RSV mice, IL-23 protein was uniquely upregulated in RSV-infected mice alone. OVA-RSV animals varied from RSV- or OVA-treated mice as they had increased lung eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2) and group 3 innate lymphoid cells (ILC3) detectable as early as 6 hours after RSV infection. Neutralized IL-33 significantly reduced ILC2 and eosinophils, and the prototypical allergic proteins, IL-5, IL-13, CCL17 and CCL22 in OVA-RSV mice. Numbers of neutrophils and ILC3 were also reduced with anti-IL-33 treatment in both RSV and OVA-RSV treated animals as well. Conclusions: Taken together, our findings indicate a broad reduction in allergic-proinflammatory events mediated by IL-33 in RSV-induced asthma exacerbation.


2021 ◽  
Author(s):  
Jiří Hrdý ◽  
Aurélie Couturier-Maillard ◽  
Denise Boutillier ◽  
Carmen Lapadatescu ◽  
Philippe Blanc ◽  
...  

Abstract Live biotherapeutic products constitute an emerging therapeutic approach to prevent or treat inflammatory bowel diseases. Lactobacillus acidophilus is a constituent of the human microbiota with probiotic potential, that are illustrated by direct and indirect antimicrobial activity against several pathogens and improvement of intestinal inflammation. In this study, we evaluated the anti-inflammatory properties of the L. acidophilus strain BIO5768 and assessed the underlying mechanisms of action. BIO5768 was able to counteract the acute colitis that is induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). When administered alone or in combination with Bifidobacterium animalis spp. lactis BIO5764 and Limosilactobacillus reuteri, BIO5768 was also able to alleviate intestinal inflammation induced by Citrobacter rodentium infection. Supplementation of naïve mice with either strain BIO5768 alone or as mixture, increased the gene expression of several target genes involved in immune signaling, including c-type lectin Reg3 gamma. Consistently, the ability of innate lymphoid cells to secrete IL-22 was enhanced in response to BIO5768. Interestingly, the aforementioned responses were shown to be independent of NOD2 and Th17 signaling in mice that were mono-colonized with BIO5768. In conclusion, we identify a new potential probiotic strain with the ability for the management of inflammatory bowel diseases, and provide some insights into its mode of action.


Sign in / Sign up

Export Citation Format

Share Document