scholarly journals Functional Contributions of Antigen Presenting Cells in Chronic Graft-Versus-Host Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Hong ◽  
Rong Jin ◽  
Xiaoqiu Dai ◽  
Xiaoming Gao

Chronic graft-versus-host disease (cGVHD) is one of the most common reasons of late non-relapse morbidity and mortality of patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT). While acute GVHD is considered driven by a pathogenic T cell dominant mechanism, the pathogenesis of cGVHD is much complicated and involves participation of a variety of immune cells other than pathogenic T cells. Existing studies have revealed that antigen presenting cells (APCs) play crucial roles in the pathophysiology of cGVHD. APCs could not only present auto- and alloantigens to prime and activate pathogenic T cells, but also directly mediate the pathogenesis of cGVHD via multiple mechanisms including infiltration into tissues/organs, production of inflammatory cytokines as well as auto- and alloantibodies. The studies of this field have led to several therapies targeting different APCs with promising results. This review will focus on the important roles of APCs and their contributions in the pathophysiology of cGVHD after allo-HSCT.

Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3390-3397 ◽  
Author(s):  
Laurent Burnier ◽  
François Saller ◽  
Linda Kadi ◽  
Anne C. Brisset ◽  
Rocco Sugamele ◽  
...  

Abstract Growth arrest-specific gene 6 (Gas6) is expressed in antigen-presenting cells and endothelial cells (ECs) but not in T cells. When wild-type (WT) or Gas6−/− mice received allogeneic non–T cell–depleted bone marrow cells, hepatic graft-versus-host disease (GVHD) was alleviated in Gas6−/− recipients regardless of donor genotype, but not in WT recipients. T-cell infiltration was more prominent and diffuse in WT than in Gas6−/− recipients' liver. When mice received 0.5 × 106 allogeneic T cells with T cell–depleted allogeneic bone marrow, clinical signs indicated that GVHD was less severe in Gas6−/− than in WT recipients, as shown by a significant improvement of the survival and reduced liver GVHD. These data demonstrate that donor cells were not involved in the protection mechanism. In addition, lack of Gas6 in antigen-presenting cells did not affect WT or Gas6−/− T-cell proliferation. We therefore assessed the response of WT or Gas6−/− ECs to tumor necrosis factor-α. Lymphocyte transmigration was less extensive through Gas6−/− than WT ECs and was not accompanied by increases in adhesion molecule levels. Thus, the lack of Gas6 in ECs impaired donor T-cell transmigration into the liver, providing a rationale for considering Gas6 pathway as a potential nonimmunosuppressive target to minimize GVHD in patients receiving allogeneic hematopoietic stem cell transplantation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4463-4463
Author(s):  
Sarah Morin-Zorman ◽  
Christian Wysocki ◽  
Catherine Matte-Martone ◽  
Kathryn W Juchem ◽  
Hung Sheng Tan ◽  
...  

Graft-versus-host disease (GVHD) limits the broader application of allogeneic hematopoietic stem cell transplantation. In prior studies we defined roles for both host and donor-derived antigen presenting cells (APCs) in the activation of alloreactive donor T cells and in promotion of GVHD. While initial T cell activation in GVHD occurs predominantly in secondary lymphoid organs, we have consistently observed MHCII+ donor-derived APCs, including dendritic cells (DCs), in histopathologic GVHD lesions, frequently adjacent to infiltrating T cells, suggesting they have a role in local GVHD reactions. Donor-derived tissue APCs (t-APCs), including tissue-DCs (t-DCs) could activate donor T cells through indirect or cross-presentation of host antigens, produce chemokines that recruit other effectors, and elaborate inflammatory mediators or suppressors of inflammation. We first characterized t-DC subsets in the skin and bowel of GVHD-affected mice. 129 (H-2b) hosts were irradiated and reconstituted with B6 (H-2b) BM with or without CD4+ and CD8+ T cells to induce GVHD and analyzed mononuclear cells from skin and bowel approximately 4 weeks post transplant. In skin, both main dermal DC populations (CD11b+ and CD103+) were significantly increased in GVHD mice as compared to BM alone controls, though the ratios of CD11b+: CD103+ DCs were similar. In the bowel lamina propria, the ratios of CD11b+CD103- to CD11b+CD103+ were increased in GVHD mice in the colon but were similar to that in BM alone controls in the small bowel. We next studied the roles of CCR6 and CCR2 in the recruitment of donor-derived APCs to skin and bowel. We transplanted mice with CCR6-/- BM in competition with wild type (wt) BM and found that the contribution of each to skin and bowel APCs matched their contributions to myeloid hematopoiesis in BM, spleen and blood, indicating that CCR6 is not required. To study the role of CCR2 we first compared mice transplanted with either wt or CCR2-/- BM with wt T cells. Despite having a profound reduction in blood monocytes, all skin and bowel t-APC subsets were present in CCR2-/- recipients, indicating that CCR2 is not required for t-APC recruitment in contrast to its role in many other models of inflammation. However, CD103+ DCs were more prevalent relative to CD11b+ DCs, consistent with a pre-cDC origin. Despite monocytopenia, recipients of CCR2-/- BM developed clinical GVHD; histology data is being analyzed and will be presented. To better define the contributions of CCR2 to t-APC recruitment and to determine monocyte versus pre-cDC origin of t-DCs, we transplanted mice with CCR2-/- BM in competition with wt BM and compared ratios of BM and blood precursors (pre-cDCs and monocytes) to t-DC ratios. For CD103+ DCs, wt/KO ratios matched the ratios of general myeloid hematopoiesis and pre-cDCs, indicating a pre-cDC origin. For CD11b+CD103- DCs, the ratio of wt/KO matched that in blood monocytes. We further subsetted CD11b+ t-DCs based on the expression of Ly6C, MAR1, CD64 and CD24, used to differentiate pre-cDC from mono-derived DCs in other organs, and did not identify any population with wt/KO ratios that did not match that of the general CD11b+ DC population, suggesting that most if not all CD11b+ t-DCs are of monocyte origin. Experiments are underway examining the role of CX3CR1 in t-APC recruitment and these data will be presented. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2227-2234 ◽  
Author(s):  
Britt E. Anderson ◽  
Jennifer M. McNiff ◽  
Dhanpat Jain ◽  
Bruce R. Blazar ◽  
Warren D. Shlomchik ◽  
...  

AbstractThe application of allogeneic stem cell transplantation (alloSCT) is limited by graft-versus-host disease (GVHD). GVHD can be divided into acute and chronic forms that likely have different requirements for initiation and pathogenesis mechanisms. In prior studies we demonstrated that residual host antigen-presenting cells (APCs) were required to initiate acute GVHD (aGVHD) mediated by CD8 T cells. In contrast, here we demonstrate that either donor or host APCs can initiate CD4-mediated GVHD in a model that has features of chronic GVHD (cGVHD). Both donor and host APCs must provide CD80/86-dependent costimulation to elicit maximal cGVHD, and there is no GVHD when both donor and host lack CD80/86. Finally, we were surprised to find that, although either donor or host APCs are sufficient to stimulate skin cGVHD, donor APCs play a dominant role in intestinal cGVHD. Both CD40 and CD80/86 are critical for donor APC function in intestinal cGVHD, but only CD80/86 is required for skin cGVHD. Thus, there are target-tissue–specific differences in APC requirements. These results identify differences in APC requirements between CD8-mediated aGVHD and CD4-mediated cGVHD. They further highlight donor APCs as additional targets for GVHD therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 843-843
Author(s):  
Natalie Stickel ◽  
Gabriele Prinz ◽  
Dietmar Pfeifer ◽  
Annette Schmitt-Graeff ◽  
Marie Follo ◽  
...  

Abstract Introduction: Acute graft-versus-host disease (GvHD) arises from the attack of recipient tissues by donor allogeneic T cells and represents one of the major limitations of allogeneic hematopoietic cell transplantation (allo-HCT). In spite of many clinical trials, the standard immunosuppressive regimens for prevention of acute GvHD have improved little in the last two decades. Hence, a better understanding of the biology of acute GvHD may improve therapeutic options. MicroRNA-146a (miR-146a) was found to be increased in the sera of patients with GvHD. Therefore, we aimed to decipher the role of miR-146a in allogeneic donor T cells during GvHD by functional studies and in patients undergoing allo-HCT by single nucleotide polymorphism (SNP) analysis. Methods: We used two different murine major MHC mismatch models for acute GvHD. Recipient mice were conditioned with irradiation before transplantation of bone marrow and either wildtype or miR-146a deficient T cells from allogeneic donor mice. Furthermore, genomic DNA from 289 patients that underwent allo-HCT and their respective hematopoietic stem cell donors was isolated in order to determine their miR-146a rs2910164genotype. Results: We observed miR-146a upregulation in T cells of mice developing acute GvHD compared to untreated mice in a major MHC and a minor histocompatibility antigen mismatch model. Transfer of miR-146a deficient T cells caused increased GvHD severity, elevated TNF serum levels and reduced survival. Conversely, the phytochemical induction of miR-146a or its overexpression in donor T cells using a specific miR-146a mimic reduced GvHD severity. TNF receptor-associated factor 6 (TRAF6), a verified target of miR-146a, was upregulated in miR-146a-/- T cells following alloantigen stimulation. Higher TRAF6 levels translated into increased NF-κB activity and TNF production in miR-146a-/- T cells, while other pro-inflammatory cytokine levels were unaffected. The detrimental effect of miR-146a deficiency in T cells could be antagonized by TNF blockade in vivo. Moreover, in contrast to WT T cells, over expression of miR-146a in Tnf deficient T cells had no effect on their alloreactivity. In the human system, the minor genotype of the SNP rs2910164, which causes reduced miR-146a expression, was more frequent in patients developing acute GvHD grade III/IV compared to all other allo-HCT recipients (n=289). Conclusions: Taken together we show that miR-146a functions as a negative regulator of the TRAF6/TNF-axis in allogeneic donor T cells during GvHD, leading to reduced TNF transcription. Given our observation on the predictive role of the SNP leading to decreased miR-146a expression in acute GvHD in patients and the possibility to exogenously enhance miR-146a expression, we provide a novel and targeted molecular approach to mitigate GvHD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 455-455 ◽  
Author(s):  
Kelli MacDonald ◽  
Rachel Kuns ◽  
Vanessa Rowe ◽  
Alistair Don ◽  
Edward Morris ◽  
...  

Abstract Either donor or host antigen presenting cells (APC) are sufficient for the initiation of CD4 dependent graft versus host disease (GVHD). However the molecular transcription pathways within APC required for this effect are unknown. The NF-kB/Rel family member RelB is associated with dendritic cell (DC) maturation and is critical for the induction of potent APC function. DC from RelB−/− mice had markedly reduced levels of CD40 and to a lesser extent CD80/CD86 following in vitro activation. Following total body irradiation, the number of residual splenic DC with nuclear RelB was increased 5-fold relative to untreated mice. We therefore examined the role of RelB within donor and host APC in GVHD utilizing two well established bone marrow transplant models of CD4-dependant GVHD. To study the requirement of RelB within host APC we generated chimeric mice by transplanting wild-type (wt) or RelB−/− B6 bone marrow into irradiated wt B6 mice. Following immune reconstitution 4–6 months later, the number and frequency of DC (CD11chi and CD11cdimB220+) was equivalent in RelB−/− and RelB+/+ chimeras, although RelB−/− chimeras were specifically deficient in CD11chiCD4+ DC. Chimeras were subsequently transplanted with allogeneic Balb/c bone marrow and purified T cells. The absence of RelB within host APC significantly improved survival (survival day 60: 83% v 19%, P< .0001) and GVHD clinical scores were significantly reduced in RelB−/− chimeras for the first 4 weeks after transplant but subsequently rose to levels equivalent to those in surviving RelB+/+ chimeras. All RelB−/− and RelB+/+ chimeras that received syngeneic grafts survived without clinical evidence of GVHD. Sera from RelB−/− chimera recipients of allogeneic grafts contained reduced IFNg (117 ± 23 vs 253 ± 45 pg/ml; P< 0.02) and increased IL-5 (358 ± 105 vs 112 ± 20 pg/ml; P<0.05) compared to RelB+/+ chimera recipients (mean ± SE). Furthermore, CD4 T cells purified from the spleens of RelB−/− chimera recipients produced 2.6 fold more IL-4 (451 ± 31 vs 168 ± 17 pg/ml; P=0.01) than those from RelB+/+ chimera recipients. Taken together these data suggest the absence of nuclear RelB translocation within host APC abrogates GVHD and this is associated with the induction of donor Th2 differentiation. To study the role of RelB within donor APC we transplanted wt or RelB−/− B6 bone marrow and wt purified T cells into irradiated B6D2F1 recipients. In this model, GVHD severity was identical for the first 4 weeks after transplant but subsequently GVHD clinical scores in the recipients of RelB−/− donor APC returned toward levels seen in syngeneic recipients (clinical scores at day 49: 1.0 ± 0.6; n=6 vs 3.75 ± 0.4; n=6; RelB−/− vs RelB+/+P=0.01). This attenuation of acute GVHD in recipients of RelB−/− donor-derived APC was associated with the reconstitution of donor DC on day 21. These data suggest the inhibition of the nuclear RelB translocation within APC represents a potential new therapeutic target for the prevention of allograft rejection and GVHD.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3748-3748
Author(s):  
Sya N. Ukena ◽  
Jens Grosse ◽  
Stefanie Buchholz ◽  
Michael Stadler ◽  
Arnold Ganser ◽  
...  

Abstract Abstract 3748 Graft-versus-host disease (GvHD) remains the major clinical complication in hematopoietic stem cell transplantation (SCT) resulting in severe morbidity and significant mortality. This alloreactive immune response is mainly induced by donor T cells transplanted with the graft. Regulatory T cells (Tregs) play an essential role in the induction and maintenance of peripheral tolerance. In addition, data from murine models have shown that Tregs can prevent GvHD while preserving the graft-versus-leukemia effect. In order to functionally and dynamically characterize human Tregs after allogeneic SCT, we analyzed CD4+CD25highCD127dim T cells isolated from the peripheral blood of more than 80 patients with hematological malignancies every 30 days over half a year following SCT. Patients were divided into the following clinical groups: (A) no signs of acute or chronic GvHD, (B) acute GvHD, (C) chronic GvHD and (D) acute GvHD passed into chronic GvHD. Human peripheral blood lymphocytes were separated by Ficoll gradient and CD4+CD14−CD25highCD127dim T cells were isolated by MoFlow cell sorting. Isolated RNA was pooled and microarray analysis was performed by using Affymetrix HG_U133_Plus2.0 Arrays. Results were verified by using quantitative realtime RT-PCR. Additionally, Tregs were phenotypically analyzed by FACS. We monitored a continous but slower recovery of Tregs in GvHD within the first 6 months following PBSCT. Manifestation of acute and chronic GvHD correlated with significantly reduced frequencies of peripheral Tregs in the first month after PBSCT compared to patients without GvHD. Microarray data revealed a high stability of the Treg transcriptome in the first half year representing the most sensitive time window for tolerance induction. Moreover, comparison of the Treg gene expression profiles from patients with and without GvHD point to a reduced suppressive function of Tregs with diminished migration capacity to the target organs likely contributing to the development of GvHD. Our findings corroborate the impact of human Tregs in the pathophysiology of GvHD and identify novel targets for the manipulation of Tregs to optimize strategies for prophylaxis and treatment of life-threatening GvHD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2997-2997
Author(s):  
Cristiana Carniti ◽  
Silvia Gimondi ◽  
Raffaella Vaccaroli ◽  
Antonio Vendramin ◽  
Anisa Bermema ◽  
...  

Abstract Abstract 2997 Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment for patients with hematological malignancies. However, its success is limited by a life-threatening complication: the graft-versus-host disease (GvHD). Although numerous studies have described immunosuppression protocols to mitigate acute GVHD (aGvHD), novel approaches are needed. Chemokines are well known inducers of leukocyte trafficking and activation. Stimulation of the chemokine receptor signaling pathway leads to initiation of the Janus Kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway that contributes to the pathogenesis of GvHD. The key role of JAK signaling in normal and abnormal lymphocyte development and function, along with the cytotoxic effects of its inhibitor INCB18424 (Ruxolitinib) on leukemia cells, prompted us to hypothesize that this selective JAK1 and 2 inhibitor could be useful as anti-GvHD agent while maintaining antitumor activity. Since CP-690550, a more selective JAK3 inhibitor, was recently shown to protect against GvHD in mouse models, we also tested whether blocking the JAK1/JAK2 pathway could be more effective in preventing GvHD. Methods: To assess the therapeutic effect of pharmacologic modulation of JAK1 and 2 on GvHD, a major histocompatibility complex (MHC) mismatched HSCT mouse model was used. Recipient BALB/c mice were lethally irradiated and treated either with spleen and bone marrow (BM) cells from C57BL/6 (B6) donors (GvHD cohort, n=8), or with spleen and BM cells from B6 donors along with INCB18424 90mg/kg/day at days -1 to 13 (INCB18424 cohort, n=10) or with CP-690550 15mg/kg/day (CP-690550 cohort, n=8) at days -1 to 13. Syngeneic transplants (B6-B6, n=6) and BALB/c recipients treated with B6 BM cells only (control cohort, n=8) were also included as controls. Mice were characterized for GvHD by monitoring overall survival and weight loss. Recipient mice were sacrificed and tissues harvested on day 14 and 30 post transplant and GvHD confirmed by histology. Results: All mice in the GvHD cohort had clinical evidence of GvHD (weight loss, generalized erythema of the skin and poor fur quality) by day 14. The INCB18424 treated mice showed markedly reduced weight loss along the time of observation when compared to the GvHD cohort. Animals in the CP-690550 cohort tended to gain weight during the time of treatment (day-1 to 13), but thereafter they exhibited reduced body weight similar to that observed in the GvHD cohort. The histological examination of the stomach, liver, skin and intestine obtained at day 14 revealed no sign of GvHD in the control group as well as in the INCB18424 group. On the other hand, mild to moderate signs of GvHD were present in the tissues of CP-690550 treated mice and extensive inflammation and disruption of the normal architecture of the tissues was observed in the GvHD group. To determine whether INCB18424 treatment affected alloreactive CD4+ T cells, total spleen T cells were harvested at day 14 from the GvHD cohort and from recipients either of INCB18424 or CP-690550. Total spleen T cells were co-cultured with BM derived BALB/c (recipient-derived) or C57BL/6 (donor-derived) dendritic cells (DCs). After 24h, T cells alloreactivity was determined by IFN-γ production assessed by intracellular staining. As expected, T cells from GvHD mice showed significantly higher alloreactivity against BALB/c DCs compared to the reactivity observed against syngeneic B6 DCs (5.24% and 0.84% respectively, p<0.05). The alloreactivity observed when T cells from INCB18424 treated mice were stimulated with allogeneic BALB/c DCs was significantly lower than that in the GvHD group (0.64% and 5.24% respectively, p<0.05) and eas also lower than that of the CP-690550 group (1.43%). STAT phosphorylation analysis demonstrated that INCB18424 treatment was effective in vitro. Conclusions: The inhibition of Jak/STAT signaling using the sensitive and specific inhibitor of Jak1/Jak2, INCB18424, conferred effective protection from aGvHD in a HSCT mouse model. INCB18424 treatment was more effective than the targeting of JAK3 with CP-690550. In fact, CP-690550 administered during GvHD induction was not completely sufficient to restore the normal weight and to prevent the histological appearance of GvHD whereas INCB18424 was. INCB18424 protected mice against acute GvHD by significantly decreasing alloreactive CD4 T cells. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Javier Briones ◽  
Silvana Novelli ◽  
Jorge Sierra

Acute Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Although this process is thought to consist of several phases, T-cell activation plays a critical role in the pathogenesis of acute GVHD. To become efficient effectors, T-cells require additional costimulation after T-cell receptor signaling. A number of molecules are involved in costimulation of T-cells such as CD28, CD40L, CD30, OX40, 4-1BB, ICOS, and LIGHT. The system is regulated by inhibitory molecules, CTLA-4, and PD-1. There is experimental evidence that those molecules are implicated in the pathogenesis of GHVD. We describe how these molecules are involved in acute GVHD and how the blockade of costimulatory molecules may have potential implications for the treatment of patients with acute GVHD.


Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 2088-2095 ◽  
Author(s):  
Motoko Koyama ◽  
Daigo Hashimoto ◽  
Kazutoshi Aoyama ◽  
Ken-ichi Matsuoka ◽  
Kennosuke Karube ◽  
...  

Dendritic cells (DCs) can be classified into 2 distinct subsets: conventional DCs (cDCs) and plasmacytoid DCs (pDCs). cDCs can prime antigen-specific T-cell immunity, whereas in vivo function of pDCs as antigen-presenting cells remains controversial. We evaluated the contribution of pDCs to allogeneic T-cell responses in vivo in mouse models of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation by an add-back study of MHC-expressing pDCs into major histocompatibility complex-deficient mice that were resistant to GVHD. Alloantigen expression on pDCs alone was sufficient to prime alloreactive T cells and cause GVHD. An inflammatory environment created by host irradiation has the decisive role in maturing pDCs for T-cell priming but this process does not require Toll-like receptor signaling. Thus, functional outcomes of pDC–T-cell interactions depend on the immunologic context of encounter. To our knowledge, these results are the first to directly demonstrate an in vivo pathogenic role of pDCs as antigen-presenting cells in an antigen-specific T cell–mediated disease in the absence of other DC subsets and to provide important insight into developing strategies for tolerance induction in transplantation.


Sign in / Sign up

Export Citation Format

Share Document