scholarly journals The Chromatin Accessibility Landscape of Peripheral Blood Mononuclear Cells in Patients With Systemic Lupus Erythematosus at Single-Cell Resolution

2021 ◽  
Vol 12 ◽  
Author(s):  
Haiyan Yu ◽  
Xiaoping Hong ◽  
Hongwei Wu ◽  
Fengping Zheng ◽  
Zhipeng Zeng ◽  
...  

ObjectiveSystemic lupus erythematosus (SLE) is a complex autoimmune disease, and various immune cells are involved in the initiation, progression, and regulation of SLE. Our goal was to reveal the chromatin accessibility landscape of peripheral blood mononuclear cells (PBMCs) in SLE patients at single-cell resolution and identify the transcription factors (TFs) that may drive abnormal immune responses.MethodsThe assay for transposase accessible chromatin in single-cell sequencing (scATAC-seq) method was applied to map the landscape of active regulatory DNA in immune cells from SLE patients at single-cell resolution, followed by clustering, peak annotation and motif analysis of PBMCs in SLE.ResultsPeripheral blood mononuclear cells were robustly clustered based on their types without using antibodies. We identified twenty patterns of TF activation that drive abnormal immune responses in SLE patients. Then, we observed ten genes that were highly associated with SLE pathogenesis by altering T cell activity. Finally, we found 12 key TFs regulating the above six genes (CD83, ELF4, ITPKB, RAB27A, RUNX3, and ZMIZ1) that may be related to SLE disease pathogenesis and were significantly enriched in SLE patients (p <0.05, FC >2). With qPCR experiments on CD83, ELF4, RUNX3, and ZMIZ1 in B cells, we observed a significant difference in the expression of genes (ELF4, RUNX3, and ZMIZ1), which were regulated by seven TFs (EWSR1-FLI1, MAF, MAFA, NFIB, NR2C2 (var. 2), TBX4, and TBX5). Meanwhile, the seven TFs showed highly accessible binding sites in SLE patients.ConclusionsThese results confirm the importance of using single-cell sequencing to uncover the real features of immune cells in SLE patients, reveal key TFs in SLE-PBMCs, and provide foundational insights relevant for epigenetic therapy.

2021 ◽  
Author(s):  
Cantong Zhang ◽  
Xiaoping Hong ◽  
Haiyan Yu ◽  
Hongwei Wu ◽  
Huixuan Xu ◽  
...  

Abstract Rheumatoid arthritis is a chronic autoinflammatory disease with an elusive etiology. Assays for transposase-accessible chromatin with single-cell sequencing (scATAC-seq) contribute to the progress in epigenetic studies. However, the impact of epigenetic technology on autoimmune diseases has not been objectively analyzed. Therefore, scATAC-seq was performed to generate a high-resolution map of accessible loci in peripheral blood mononuclear cells (PBMCs) of RA patients at the single-cell level. The purpose of our project was to discover the transcription factors (TFs) that were involved in the pathogenesis of RA at single-cell resolution. In our research, we obtained 22 accessible chromatin patterns. Then, 10 key TFs were involved in the RA pathogenesis by regulating the activity of MAP kinase. Consequently, two genes (PTPRC, SPAG9) regulated by 10 key TFs were found that may be associated with RA disease pathogenesis and these TFs were obviously enriched in RA patients (p<0.05, FC>1.2). With further qPCR validation on PTPRC and SPAG9 in monocytes, we found differential expression of these two genes, which were regulated by eight TFs (ZNF384, HNF1B, DMRTA2, MEF2A, NFE2L1, CREB3L4 (var. 2), FOSL2::JUNB (var. 2), MEF2B). What is more, the eight TFs showed highly accessible binding sites in RA patients. These findings demonstrate the value of using scATAC-seq to reveal transcriptional regulatory variation in RA-derived PBMCs, providing insights on therapy from an epigenetic perspective.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Hung-Ju Lin ◽  
Sung-Liang Yu ◽  
Ta-Chen Su ◽  
Hsiu-Ching Hsu ◽  
Ming-Fong Chen ◽  
...  

Abstract Statins inhibit cholesterol biogenesis and modulate atheroma inflammation to reduce cardiovascular risks. Promoted by immune and non-immune cells, serum C-reactive protein (CRP) might be a biomarker suboptimal to assess inflammation status. Although it has been reported that statins modulated inflammation via microRNAs (miRNAs), evidence remains lacking on comprehensive profiling of statin-induced miRNAome alterations in immune cells. We recruited 19 hypercholesterolemic patients receiving 2 mg/day pitavastatin and 15 ones receiving 10 mg/day atorvastatin treatment for 12 weeks, and performed microarray-based profiling of 1733 human mature miRNAs in peripheral blood mononuclear cells (PBMCs) before and after statin treatment. Differentially expressed miRNAs were determined if their fold changes were &gt;1.50 or &lt;0.67, after validated using quantitative polymerase chain reaction (qPCR). The miRSystem and miTALOS platforms were utilized for pathway analysis. Of the 34 patients aged 63.7 ± 6.2 years, 27 were male and 19 were with coronary artery disease. We discovered that statins induced differential expressions of miR-483-5p, miR-4667-5p, miR-1244, and miR-3609, with qPCR-validated fold changes of 1.74 (95% confidence interval, 1.33–2.15), 1.61 (1.25–1.98), 1.61 (1.01–2.21), and 1.68 (1.19–2.17), respectively. The fold changes of the four miRNAs were not correlated with changes of low-density-lipoprotein cholesterol or CRP, after sex, age, and statin type were adjusted. We also revealed that RhoA and transforming growth factor-β signaling pathways might be regulated by the four miRNAs. Given our findings, miRNAs might be involved in statin-induced inflammation modulation in PBMCs, providing likelihood to assess and reduce inflammation in patients with atherosclerotic cardiovascular diseases.


2001 ◽  
Vol 21 (5) ◽  
pp. 627-635 ◽  
Author(s):  
Jan D. Lünemann ◽  
Frank Buttgereit ◽  
Robert Tripmacher ◽  
Christoph G. O. Baerwald ◽  
Gerd-Rüdiger Burmester ◽  
...  

Previous studies demonstrated that the adaptive response to stressors and inflammatory signals involves the activation of the automotic nervous system. Catecholamines have been shown to modulate the activity of various immune effector cells directly via membrane adrenergic receptors. Here, we investigated immediate effects of norepinephrine on energy metabolism of immune cells. Norepinephrine inhibits oxygen consumption of human peripheral blood mononuclear cells at concentrations that are relevant to its physiological range. The ?-adrenoreceptor antagonist propranolol, but not the ?-adrenoreceptor antagonist phentolamine reversed the norepinephrine induced inhibition in quiescent cells. Conversely, phentolamine but not propranolol is capable of blocking norepinephrine mediated effects in mitogen activated human peripheral blood mononuclear cells. Our data indicate that the sensitization of ?- and ?-adrenoreceptors on immune cells is differentially regulated, and that these processes depend on the activation state of these cells. These findings have important implications for the understanding of stress-induced suppression of immune function and may contribute to the elucidation of the pathogenesis of immunologically mediated diseases.


Lupus ◽  
2019 ◽  
Vol 28 (3) ◽  
pp. 359-364 ◽  
Author(s):  
F Zheng ◽  
D Tang ◽  
H Xu ◽  
Y Xu ◽  
W Dai ◽  
...  

Aim The aim of this paper is to explore the expression of 6-methyladenine (6mA) DNA and to elucidate its gene regulation role in systemic lupus erythematosus (SLE). Methods Twenty SLE patients and 20 normal control healthy individuals (HCs) were included in this study. Genomic DNA was isolated from peripheral blood mononuclear cells and subsequently underwent 6mA-immunoprecipitation-sequencing (6mA-IP-Seq) after DNA quality control and 6mA precipitation. Bioinformation analysis was applied to the raw data comparing 6mA levels between SLE patients and HCs. Results We identified 5462 hypermethylation and 431 hypomethylation genes in PBMCs of individuals with SLE, which indicated that a high level of 6mA participates in the pathogenesis of SLE. Gene ontology analysis revealed that hypermethylation genes might regulate the inflammatory process, which has been well documented in the pathogenesis of SLE. Conclusion 6mA may be involved in the initial development of SLE, which may lead to its potential use as an early diagnostic marker and therapeutic target.


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi125-vi125
Author(s):  
Sophie Dusoswa ◽  
Jan Verhoeff ◽  
Matheus Crommentuijn ◽  
Tom Würdinger ◽  
David Noske ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document