scholarly journals Pattern Recognition Proteins: First Line of Defense Against Coronaviruses

2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos A. Labarrere ◽  
Ghassan S. Kassab

The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host’s immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host’s innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Anna Jane Battersby ◽  
Beate Kampmann ◽  
Sarah Burl

A potential role for vitamin D as a therapeutic immunomodulator in tuberculosis (TB) has been recognised for over 150 years, but has only recently returned to the centre of the research arena due to the increasing awareness of the global vitamin D deficiency epidemic. As early as birth a child is often deficient in vitamin D, which may not only affect their bone metabolism but also modulate their immune function, contributing to the increased susceptibility to many infections seen early in life. Recent studies have begun to explain the mechanisms by which vitamin D affects immunity. Antimicrobial peptides are induced in conjunction with stimulation of innate pattern recognition receptors enhancing immunity to particular infections. In contrast the role of vitamin D within the adaptive immune response appears to be more regulatory in function, perhaps as a mechanism to reduce unwanted inflammation. In this paper we focus on the effect of vitamin D on immunity to TB. Where much of the attention has been paid by past reviews to the role of vitamin D in adult TB patients, this paper, where possible, focuses on research in paediatric populations.


Author(s):  
Paul Klenerman

Following the innate immune response, which acts very rapidly, the adaptive immune response plays a critical role in host defence against infectious disease. Unlike the innate response, which is triggered by pattern recognition of pathogens, i.e. features that are common to many bacteria or viruses, the adaptive response is triggered by structural features—known as antigens or epitopes—that are typically unique to a single organism....


Life Sciences ◽  
2016 ◽  
Vol 151 ◽  
pp. 139-146 ◽  
Author(s):  
Firoz Akhter ◽  
M. Salman Khan ◽  
Abdulrahman A. Alatar ◽  
Mohammad Faisal ◽  
Saheem Ahmad

Glia ◽  
2015 ◽  
Vol 64 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Heather L. Martin ◽  
Matteo Santoro ◽  
Sarah Mustafa ◽  
Gernot Riedel ◽  
John V. Forrester ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document