Adaptive immunity

Author(s):  
Paul Klenerman

Following the innate immune response, which acts very rapidly, the adaptive immune response plays a critical role in host defence against infectious disease. Unlike the innate response, which is triggered by pattern recognition of pathogens, i.e. features that are common to many bacteria or viruses, the adaptive response is triggered by structural features—known as antigens or epitopes—that are typically unique to a single organism....

2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos A. Labarrere ◽  
Ghassan S. Kassab

The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host’s immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host’s innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.


2020 ◽  
pp. 325-336
Author(s):  
Paul Klenerman

The adaptive immune response is distinguished from the innate immune response by two main features: its capacity to respond flexibly to new, previously unencountered antigens (antigenic specificity), and its enhanced capacity to respond to previously encountered antigens (immunological memory). These two features have provided the focus for much research attention, from the time of Jenner, through Pasteur onwards. Historically, innate and adaptive immune responses have often been treated as separate, with the latter being considered more ‘advanced’ because of its flexibility. It is now clear this not the case, and in recent years the molecular basis for these phenomena has become much better understood.


2022 ◽  
Vol 12 ◽  
Author(s):  
Elisa Pesce ◽  
Nicola Manfrini ◽  
Chiara Cordiglieri ◽  
Spartaco Santi ◽  
Alessandra Bandera ◽  
...  

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by beta-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has rapidly spread across the globe starting from February 2020. It is well established that during viral infection, extracellular vesicles become delivery/presenting vectors of viral material. However, studies regarding extracellular vesicle function in COVID-19 pathology are still scanty. Here, we performed a comparative study on exosomes recovered from the plasma of either MILD or SEVERE COVID-19 patients. We show that although both types of vesicles efficiently display SARS-CoV-2 spike-derived peptides and carry immunomodulatory molecules, only those of MILD patients are capable of efficiently regulating antigen-specific CD4+ T-cell responses. Accordingly, by mass spectrometry, we show that the proteome of exosomes of MILD patients correlates with a proper functioning of the immune system, while that of SEVERE patients is associated with increased and chronic inflammation. Overall, we show that exosomes recovered from the plasma of COVID-19 patients possess SARS-CoV-2-derived protein material, have an active role in enhancing the immune response, and possess a cargo that reflects the pathological state of patients in the acute phase of the disease.


1999 ◽  
Vol 67 (4) ◽  
pp. 2001-2004 ◽  
Author(s):  
Sing Sing Way ◽  
Alain C. Borczuk ◽  
Marcia B. Goldberg

ABSTRACT Shigella flexneri cydC, which is deficient in cytochrome bd, was rapidly cleared from the lungs of intranasally inoculated mice and was Sereny negative, yet it induced 93% protection against challenge with wild-type S. flexneri. Mice that lack immunoglobulin A (IgA) were fully protected, suggesting that IgA may not be required for adaptive immunity in this model system.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Elias J. Sayour ◽  
Duane A. Mitchell

Although cancer immunotherapy has shown significant promise in mediating efficacious responses, it remains encumbered by tumor heterogeneity, loss of tumor-specific antigen targets, and the regulatory milieu both regionally and systemically. Cross talk between the innate and adaptive immune response may be requisite to polarize sustained antigen specific immunity. Cancer vaccines can serve as an essential fulcrum in initiating innate immunity while molding and sustaining adaptive immunity. Although peptide vaccines have shown tepid responses in a therapeutic setting with poor correlates for immune activity, RNA vaccines activate innate immune responses and have shown promising effects in preclinical and clinical studies based on enhanced DC migration. While the mechanistic insights behind the interplay between innate and adaptive immunity may be unique to the immunotherapeutic being investigated, understanding this dynamic is important to coordinate the different arms of the immune response in a focused response against cancer antigens.


mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Jhansi L. Leslie ◽  
Kimberly C. Vendrov ◽  
Matthew L. Jenior ◽  
Vincent B. Young

ABSTRACTClostridium(Clostridioides)difficile, a Gram-positive, anaerobic bacterium, is the leading single cause of nosocomial infections in the United States. A major risk factor forClostridium difficileinfection (CDI) is prior exposure to antibiotics, as they increase susceptibility to CDI by altering the membership of the microbial community enabling colonization. The importance of the gut microbiota in providing protection from CDI is underscored by the reported 80 to 90% success rate of fecal microbial transplants in treating recurrent infections. Adaptive immunity, specifically humoral immunity, is also sufficient to protect from both acute and recurrent CDI. However, the role of the adaptive immune system in mediating clearance ofC. difficilehas yet to be resolved. Using murine models of CDI, we found that adaptive immunity is dispensable for clearance ofC. difficile. However, random forest analysis using only two members of the resident bacterial community correctly identified animals that would go on to clear the infection with 66.7% accuracy. These findings indicate that the indigenous gut microbiota independent of adaptive immunity facilitates clearance ofC. difficilefrom the murine gastrointestinal tract.IMPORTANCEClostridium difficileinfection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently, the role of the adaptive immune response in modulating levels ofC. difficilecolonization is unresolved. This work suggests that the indigenous gut microbiota is a main factor that promotes clearance ofC. difficilefrom the GI tract. Our results show that clearance ofC. difficilecan occur without contributions from the adaptive immune response. This study also has implications for the design of preclinical studies testing the efficacy of vaccines on clearance of bacterial pathogens, as inherent differences in the baseline community structure of animals may bias findings.


2019 ◽  
Author(s):  
Jhansi L. Leslie ◽  
Kimberly C. Vendrov ◽  
Matthew L. Jenior ◽  
Vincent B. Young

AbstractClostridium (Clostridioides) difficile, a Gram-positive, anaerobic bacterium is the leading single cause of nosocomial infections in the United States. A major risk factor for C. difficile infection (CDI) is prior exposure to antibiotics as they increase susceptibility to CDI by altering the membership of the microbial community enabling colonization. The importance of the gut microbiota in providing protection from CDI is underscored by the reported 80-90% success rate of fecal microbial transplants in treating recurrent infection. Adaptive immunity, specifically humoral immunity, is also sufficient to protect from both acute and recurrent CDI. However, the role of the adaptive immune system in mediating clearance of C. difficile has yet to be resolved. Using murine models of CDI, we found that adaptive immunity is dispensable for clearance of C. difficile. However, Random Forest analysis using only 2 members of the resident bacterial community correctly identified animals that would go on to clear the infection with 66.7% accuracy. These findings indicate that the indigenous gut microbiota independent of adaptive immunity facilitates clearance of C. difficile from the murine gastrointestinal tract.ImportanceC. difficile infection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently the role of the adaptive immune response in modulating levels of C. difficile colonization is unresolved. This work suggests that the indigenous gut microbiota is a main factor that promotes clearance of C. difficile from the GI tract. Our results show that clearance of C. difficile can occur without contributions from the adaptive immune response. This study also has implications for the design of preclinical studies testing the efficacy of vaccines on clearance of bacterial pathogens as inherent differences in the baseline community structure of animals may bias findings.


Author(s):  
Sean F. Monaghan ◽  
Alfred Ayala

The development of sepsis remains a significant morbid event facing the critically-ill/severely-injured patient and while substantial improvements in supportive care have been made, a true molecular pharmacological treatment directed at mitigating the development of this condition has remained elusive. This is due, at least in part, to our lack of appreciation of the complex and intertwined changes in the nature of not only the innate, but also the adaptive immune response and how they affect our response to septic challenge. Here, we consider some of the aspects of the adaptive immune response, how it changes in the response to sepsis, possible pathological processes contributing to patient/experimental animal susceptibility to poorer outcomes and where novel immune-therapeutic targets/biomarkers may exist.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 919 ◽  
Author(s):  
Justin K. Messex ◽  
Crystal J. Byrd ◽  
Geou-Yarh Liou

The immune response is critical in the maintenance of an organism’s health. The immune response can be broken down into two groups. The innate response, which is fast-acting and rids the body of most foreign material before infection occurs, and the adaptive response, a more specific defense against pathogen composed mostly of antibody production and killer cells. Linking the two responses via cytokine and chemokine secretion are macrophages, motile phagocytic cells that ingest and present foreign material playing a role in the innate and adaptive immune response. Although macrophages are necessary for the survival of an organism, studies have also shown macrophages play a more sinister role in the initiation, progression, and metastasis in tumorous cells. In this comprehensive review, we show how macrophages induce such a response through abnormal cellular signaling and creating a cellular microenvironment conducive for tumor growth and metastasis, as well as the future outlook of this field.


Sign in / Sign up

Export Citation Format

Share Document