scholarly journals Dependence on Autophagy for Autoreactive Memory B Cells in the Development of Pristane-Induced Lupus

2021 ◽  
Vol 12 ◽  
Author(s):  
Albert Jang ◽  
Robert Sharp ◽  
Jeffrey M. Wang ◽  
Yin Feng ◽  
Jin Wang ◽  
...  

The production of autoantibodies by autoreactive B cells plays a major role in the pathogenesis of lupus. Increases in memory B cells have been observed in human lupus patients and autoimmune lpr mice. Autophagy is required for the maintenance of memory B cells against viral infections; however, whether autophagy regulates the persistence of autoantigen-specific memory B cells and the development of lupus remains to be determined. Here we show that memory B cells specific for autoantigens can be detected in autoimmune lpr mice and a pristane-induced lupus mouse model. Interestingly, B cell-specific deletion of Atg7 led to significant loss of autoreactive memory B cells and reduced autoantibody production in pristane-treated mice. Autophagy deficiency also attenuated the development of autoimmune glomerulonephritis and pulmonary inflammation after pristane treatment. Adoptive transfer of wild type autoreactive memory B cells restored autoantibody production in Atg7-deficient recipients. These data suggest that autophagy is important for the persistence of autoreactive memory B cells in mediating autoantibody responses. Our results suggest that autophagy could be targeted to suppress autoreactive memory B cells and ameliorate humoral autoimmunity.

2010 ◽  
Vol 358 (1-2) ◽  
pp. 56-65 ◽  
Author(s):  
Yanran Cao ◽  
Maja Gordic ◽  
Sebastian Kobold ◽  
Nesrine Lajmi ◽  
Sabrina Meyer ◽  
...  

1996 ◽  
Vol 183 (5) ◽  
pp. 2259-2269 ◽  
Author(s):  
M F Bachmann ◽  
B Odermatt ◽  
H Hengartner ◽  
R M Zinkernagel

Vesicular stomatitis virus (VSV) induces an early T cell-independent neutralizing lgM response that is followed by a long-lived, T cell-dependent lgG response. We used the specific amplification factor of several 100x of VSV-virions for immunohistology to analyze the localization of VSV-specific B cells at different time points after immunization. At the peak of the IgM response (day 4), VSV-specific B cells were predominantly present in the red pulp and marginal zone but not in the T area. These B cells were mostly stained in the cytoplasm, characterizing them as antibody secreting cells. By day 6 after immunization, germinal centers (GC) containing surface-stained VSV-specific B cells became detectable and were fully established by day 12. At the same time, large VSV-specific B cell aggregates were present in the red pulp. High numbers of VSV-specific GC associated with persisting antigen were present 1 mo after immunization and later, i.e., considerably longer than has been observed for haptens. Some GC, exhibiting follicular dendritic cells and containing VSV-specific, proliferating B cells were still detectable up to 100 d after immunization. Long-lived GC were also observed after immunization with recombinant VSV-glycoprotein in absence of adjuvants. Thus some anti-virally protective (memory) B cells are cycling and locally proliferate in long-lived GC in association with persisting antigen and therefore seem responsible for long-term maintenance of elevated antibody levels. These observations extend earlier studies with carrier hapten antigens in adjuvant depots or complexed with specific IgG; they are the first to show colocalization of antigen and specific memory B cells and to analyze a protective neutralizing antibody response against an acute viral infection.


2021 ◽  
Author(s):  
Pablo Garcia-Valtanen ◽  
Christopher Martin Hope ◽  
Makutiro Ghislain Masavuli ◽  
Arthur Eng Lip Yeow ◽  
Harikrishnan Balachandran ◽  
...  

Background The duration and magnitude of SARS-CoV-2 immunity after infection, especially with regard to the emergence of new variants of concern (VoC), remains unclear. Here, immune memory to primary infection and immunity to VoC was assessed in mild-COVID-19 convalescents one year after infection and in the absence of viral re-exposure or COVID-19 vaccination. Methods Serum and PBMC were collected from mild-COVID-19 convalescents at ~6 and 12 months after a COVID-19 positive PCR (n=43) and from healthy SARS-CoV-2-seronegative controls (n=15-40). Serum titers of RBD and Spike-specific Ig were quantified by ELISA. Virus neutralisation was assessed against homologous, pseudotyped virus and homologous and VoC live viruses. Frequencies of Spike and RBD-specific memory B cells were quantified by flow cytometry. Magnitude of memory T cell responses was quantified and phenotyped by activation-induced marker assay, while T cell functionality was assessed by intracellular cytokine staining using peptides specific to homologous Spike virus antigen and four VoC Spike antigens. Findings At 12 months after mild-COVID-19, >90% of convalescents remained seropositive for RBD-IgG and 88.9% had circulating RBD-specific memory B cells. Despite this, only 51.2% convalescents had serum neutralising activity against homologous live-SARS-CoV-2 virus, which decreased to 44.2% when tested against live B.1.1.7, 4.6% against B.1.351, 11.6% against P.1 and 16.2%, against B.1.617.2 VoC. Spike and non-Spike-specific T cells were detected in >50% of convalescents with frequency values higher for Spike antigen (95% CI, 0.29-0.68% in CD4+ and 0.11-0.35% in CD8+ T cells), compared to non-Spike antigens. Despite the high prevalence and maintenance of Spike-specific T cells in Spike 'high-responder' convalescents at 12 months, T cell functionality, measured by cytokine expression after stimulation with Spike epitopes corresponding to VoC was severely affected. Interpretations SARS-CoV-2 immunity is retained in a significant proportion of mild COVID-19 convalescents 12 months post-infection in the absence of re-exposure to the virus. Despite this, changes in the amino acid sequence of the Spike antigen that are present in current VoC result in virus evasion of neutralising antibodies, as well as evasion of functional T cell responses.


2000 ◽  
Vol 191 (7) ◽  
pp. 1149-1166 ◽  
Author(s):  
Louise J. McHeyzer-Williams ◽  
Melinda Cool ◽  
Michael G. McHeyzer-Williams

The mechanisms that regulate B cell memory and the rapid recall response to antigen remain poorly defined. This study focuses on the rapid expression of B cell memory upon antigen recall in vivo, and the replenishment of quiescent B cell memory that follows. Based on expression of CD138 and B220, we reveal a unique and major subtype of antigen-specific memory B cells (B220−CD138−) that are distinct from antibody-secreting B cells (B220+/−CD138+) and B220+CD138− memory B cells. These nonsecreting somatically mutated B220− memory responders rapidly dominate the splenic response and comprise >95% of antigen-specific memory B cells that migrate to the bone marrow. By day 42 after recall, the predominant quiescent memory B cell population in the spleen (75–85%) and the bone marrow (>95%) expresses the B220− phenotype. Upon adoptive transfer, B220− memory B cells proliferate to a lesser degree but produce greater amounts of antibody than their B220+ counterparts. The pattern of cellular differentiation after transfer indicates that B220− memory B cells act as stable self-replenishing intermediates that arise from B220+ memory B cells and produce antibody-secreting cells on rechallenge with antigen. Cell surface phenotype and Ig isotype expression divide the B220− compartment into two main subsets with distinct patterns of integrin and coreceptor expression. Thus, we identify new cellular components of B cell memory and propose a model for long-term protective immunity that is regulated by a complex balance of committed memory B cells with subspecialized immune function.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Brenda L. Tesini ◽  
Preshetha Kanagaiah ◽  
Jiong Wang ◽  
Megan Hahn ◽  
Jessica L. Halliley ◽  
...  

ABSTRACTMemory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection “imprints” for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCERapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.


2012 ◽  
Vol 19 (6) ◽  
pp. 842-848 ◽  
Author(s):  
Sweta M. Patel ◽  
Mohammad Arif Rahman ◽  
M. Mohasin ◽  
M. Asrafuzzaman Riyadh ◽  
Daniel T. Leung ◽  
...  

ABSTRACTVibrio choleraeO1 causes cholera, a dehydrating diarrheal disease. We have previously shown thatV. cholerae-specific memory B cell responses develop after cholera infection, and we hypothesize that these mediate long-term protective immunity against cholera. We prospectively followed household contacts of cholera patients to determine whether the presence of circulatingV. choleraeO1 antigen-specific memory B cells on enrollment was associated with protection againstV. choleraeinfection over a 30-day period. Two hundred thirty-six household contacts of 122 index patients with cholera were enrolled. The presence of lipopolysaccharide (LPS)-specific IgG memory B cells in peripheral blood on study entry was associated with a 68% decrease in the risk of infection in household contacts (P= 0.032). No protection was associated with cholera toxin B subunit (CtxB)-specific memory B cells or IgA memory B cells specific to LPS. These results suggest that LPS-specific IgG memory B cells may be important in protection against infection withV. choleraeO1.


2019 ◽  
Vol 103 (4) ◽  
pp. 716-723 ◽  
Author(s):  
Gonca E. Karahan ◽  
Juliette Krop ◽  
Caroline Wehmeier ◽  
Yvonne J.H. de Vaal ◽  
Janneke Langerak–Langerak ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Taishi Kimura ◽  
Claudia T. Flynn ◽  
J. Lindsay Whitton

Abstract Previous research suggests that hepatocytes catabolize chemical toxins but do not remove microbial agents, which are filtered out by other liver cells (Kupffer cells and endothelial cells). Here we show that, contrary to current understanding, hepatocytes trap and rapidly silence type B coxsackieviruses (CVBs). In genetically wildtype mice, this activity causes hepatocyte damage, which is alleviated in mice carrying a hepatocyte-specific deletion of the coxsackievirus-adenovirus receptor. However, in these mutant mice, there is a dramatic early rise in blood-borne virus, followed by accelerated systemic disease and increased mortality. Thus, wild type hepatocytes act similarly to a sponge for CVBs, protecting against systemic illness at the expense of their own survival. We speculate that hepatocytes may play a similar role in other viral infections as well, thereby explaining why hepatocytes have evolved their remarkable regenerative capacity. Our data also suggest that, in addition to their many other functions, hepatocytes might be considered an integral part of the innate immune system.


Sign in / Sign up

Export Citation Format

Share Document