scholarly journals Group 2 Innate Lymphoid Cells Exhibit Tissue-Specific Dynamic Behaviour During Type 2 Immune Responses

2021 ◽  
Vol 12 ◽  
Author(s):  
Laurence S. C. Lok ◽  
Jennifer A. Walker ◽  
Helen E. Jolin ◽  
Seth T. Scanlon ◽  
Masaru Ishii ◽  
...  

Group 2 innate lymphoid cells (ILC2s) are early effectors of mucosal type 2 immunity, producing cytokines such as interleukin (IL)-13 to mediate responses to helminth infection and allergen-induced inflammation. ILC2s are also present in lymph nodes (LNs) and can express molecules required for antigen presentation, but to date there are limited data on their dynamic behaviour. We used a CD2/IL-13 dual fluorescent reporter mouse for in vivo imaging of ILC2s and Th2 T cells in real time following a type 2 priming helminth infection or egg injection. After helminth challenge, we found that ILC2s were the main source of IL-13 in lymphoid organs (Peyer’s patches and peripheral LNs), and were located in T cell areas. Intravital imaging demonstrated an increase in IL-13+ ILC2 size and movement following helminth infection, but reduced duration of interactions with T cells compared with those in homeostasis. In contrast, in the intestinal mucosa, we observed an increase in ILC2-T cell interactions post-infection, including some of prolonged duration, as well as increased IL-13+ ILC2 movement. These data suggest that ILC2 activation enhances cell motility, with the potential to increase the area of distribution of cytokines to optimise the early generation of type 2 responses. The prolonged ILC2 interactions with T cells within the intestinal mucosa are consistent with the conclusion that contact-based T cell activation may occur within inflamed tissues rather than lymphoid organs. Our findings have important implications for our understanding of the in vivo biology of ILC2s and the way in which these cells facilitate adaptive immune responses.

2016 ◽  
Vol 9 (6) ◽  
pp. 1384-1394 ◽  
Author(s):  
T Mchedlidze ◽  
M Kindermann ◽  
A T Neves ◽  
D Voehringer ◽  
M F Neurath ◽  
...  

2021 ◽  
Author(s):  
◽  
Ryan Kyle

<p>Type 2 immune responses are generated to provide protection against parasitic helminth infections, however these responses also cause the pathologies associated with allergic inflammation. Studies of the cell types and signalling pathways that mediate Type 2 immune responses have been previously undertaken with the goals of efficient development of vaccines against helminths, and identification of pathways that can be inhibited to decrease the damage caused by allergic inflammation.  The cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13) mediate many of the downstream effector functions of the Type 2 immune response. To study the mechanisms that control expression of these two cytokines I have used a novel dual cytokine IL-4 and IL-13 transgenic reporter mouse. Utilising this tool along with other IL-4 reporter mice I have discovered that the amount of T cell receptor (TCR) signalling modulates the allelic expression of IL-4 by CD4⁺ T cells. The transgenic IL-4 reporter mouse has for the first time allowed independent measurement of the effects of IL-4 deficiency on the expression of IL-4 in vivo. Using this system I have found that IL- 4 is not required for the in vivo generation or expansion of IL-4 producing CD4⁺ T cells. Th2 differentiated CD4⁺ T cells also expresses IL-13, however the dual reporter mice have demonstrated that IL-13 is expressed consistently later than IL-4 in vitro, and IL-13 requires constant, or multiple exposures to TCR stimulus for expression to be induced. IL-13 expression is absent from lymph node CD4⁺ T cells during exposure to allergens or helminth infection. Sequestration of CD4⁺ T cells in the lymph node does not impact the number of IL-13 expressing CD4⁺ T cells in the lung during a helminth infection, indicating that adaptive immune cell derived IL-13 may be entirely produced by lung resident cells not requiring transit through the lymph node.  I have characterised a population of innate lymphoid cells (ILCs) within the skin and found that the proportion of these cells that constitutively express IL-13 decreases with age. These cells did not drastically change in numbers or IL-13 responses in a range of inflammatory conditions including a model of atopic dermatitis. Basophils were found to respond to the atopic dermatitis model by migrating specifically to the treated skin site and draining lymph node, and producing IL-4 in a thymic stromal lymphopoietin dependant manner.  Treatment with exogenous cytokines induced IL-13 expression from group 2 ILCs (ILC2s) in the lung and these cells promoted protective immune responses against Nippostrongylus brasiliensis infection. The immune response generated during a primary infection by Nippostrongylus brasiliensis provides protection from re-infection. Long-term protection is dependent on CD4⁺ T cells but when sufficiently stimulated by cytokine, ILC2s can rescue the protection lost by the depletion of CD4⁺ T cells.  This thesis has shown that CD4⁺ T cells and populations of innate immune cells differentially regulate the expression of the closely related Type 2 cytokines IL-4 and IL- 13. These discoveries will help direct future research aiming to boost the effectiveness of anti-helminth vaccines, or decrease the pathology caused by allergic diseases by targeting specific cytokine expression.</p>


2021 ◽  
Author(s):  
◽  
Ryan Kyle

<p>Type 2 immune responses are generated to provide protection against parasitic helminth infections, however these responses also cause the pathologies associated with allergic inflammation. Studies of the cell types and signalling pathways that mediate Type 2 immune responses have been previously undertaken with the goals of efficient development of vaccines against helminths, and identification of pathways that can be inhibited to decrease the damage caused by allergic inflammation.  The cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13) mediate many of the downstream effector functions of the Type 2 immune response. To study the mechanisms that control expression of these two cytokines I have used a novel dual cytokine IL-4 and IL-13 transgenic reporter mouse. Utilising this tool along with other IL-4 reporter mice I have discovered that the amount of T cell receptor (TCR) signalling modulates the allelic expression of IL-4 by CD4⁺ T cells. The transgenic IL-4 reporter mouse has for the first time allowed independent measurement of the effects of IL-4 deficiency on the expression of IL-4 in vivo. Using this system I have found that IL- 4 is not required for the in vivo generation or expansion of IL-4 producing CD4⁺ T cells. Th2 differentiated CD4⁺ T cells also expresses IL-13, however the dual reporter mice have demonstrated that IL-13 is expressed consistently later than IL-4 in vitro, and IL-13 requires constant, or multiple exposures to TCR stimulus for expression to be induced. IL-13 expression is absent from lymph node CD4⁺ T cells during exposure to allergens or helminth infection. Sequestration of CD4⁺ T cells in the lymph node does not impact the number of IL-13 expressing CD4⁺ T cells in the lung during a helminth infection, indicating that adaptive immune cell derived IL-13 may be entirely produced by lung resident cells not requiring transit through the lymph node.  I have characterised a population of innate lymphoid cells (ILCs) within the skin and found that the proportion of these cells that constitutively express IL-13 decreases with age. These cells did not drastically change in numbers or IL-13 responses in a range of inflammatory conditions including a model of atopic dermatitis. Basophils were found to respond to the atopic dermatitis model by migrating specifically to the treated skin site and draining lymph node, and producing IL-4 in a thymic stromal lymphopoietin dependant manner.  Treatment with exogenous cytokines induced IL-13 expression from group 2 ILCs (ILC2s) in the lung and these cells promoted protective immune responses against Nippostrongylus brasiliensis infection. The immune response generated during a primary infection by Nippostrongylus brasiliensis provides protection from re-infection. Long-term protection is dependent on CD4⁺ T cells but when sufficiently stimulated by cytokine, ILC2s can rescue the protection lost by the depletion of CD4⁺ T cells.  This thesis has shown that CD4⁺ T cells and populations of innate immune cells differentially regulate the expression of the closely related Type 2 cytokines IL-4 and IL- 13. These discoveries will help direct future research aiming to boost the effectiveness of anti-helminth vaccines, or decrease the pathology caused by allergic diseases by targeting specific cytokine expression.</p>


2021 ◽  
Vol 6 (57) ◽  
pp. eabe3218
Author(s):  
Coco Chu ◽  
Christopher N. Parkhurst ◽  
Wen Zhang ◽  
Lei Zhou ◽  
Hiroshi Yano ◽  
...  

Group 2 innate lymphoid cells (ILC2s) reside in multiple tissues, including lymphoid organs and barrier surfaces, and secrete type 2 cytokines including interleukin-5 (IL-5), IL-9, and IL-13. These cells participate in multiple physiological processes including allergic inflammation, tissue repair, metabolic homeostasis, and host defense against helminth infections. Recent studies indicate that neurotransmitters and neuropeptides can play an important role in regulating ILC2 responses; however, the mechanisms that underlie these processes in vivo remain incompletely defined. Here, we identify that activated ILC2s up-regulate choline acetyltransferase (ChAT)—the enzyme responsible for the biosynthesis of acetylcholine (ACh)—after infection with the helminth parasite Nippostrongylus brasiliensis or treatment with alarmins or cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). ILC2s also express acetylcholine receptors (AChRs), and ACh administration promotes ILC2 cytokine production and elicits expulsion of helminth infection. In accordance with this, ChAT deficiency in ILC2s leads to defective ILC2 responses and impaired immunity against helminth infection. Together, these results reveal a previously unrecognized role of the ChAT-ACh pathway in promoting type 2 innate immunity to helminth infection.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


2020 ◽  
Vol 40 (4) ◽  
pp. 853-864 ◽  
Author(s):  
Tian X. Zhao ◽  
Stephen A. Newland ◽  
Ziad Mallat

Regulatory T cells and type-2 innate lymphoid cells represent 2 subsets of immune cells, which have been shown in preclinical models to be important in atherosclerosis and myocardial repair. Regulatory T cells play a crucial role in immune homeostasis and tolerance via their interactions with effector T cells, dendritic cells, and monocytes/macrophages. They also utilize and secrete inhibitory cytokines, including interleukin 10 and transforming growth factor β, to regulate or suppress pathogenic immune responses. Type-2 innate lymphoid cells have an important role in type-2 immune responses and tissue repair through secreting interleukins 5 and 13, as well as a variety of biological mediators and growth factors. Intriguingly, interleukin-2 has emerged as a common cytokine, which can be harnessed to upregulate both cell types, and also has important translational consequences as clinical trials are ongoing for its use in cardiovascular disease. Here, we briefly review the biology of these regulatory immune cell types, discuss the preclinical and clinical evidence for their functions in cardiovascular disease, examine the prospects for clinical translation and current ongoing trials, and finally, postulate how overlap in the mechanisms of upregulation may be leveraged in future treatments for patients.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Marion Rolot ◽  
Benjamin G. Dewals

Macrophages are highly plastic innate immune cells that adopt an important diversity of phenotypes in response to environmental cues. Helminth infections induce strong type 2 cell-mediated immune responses, characterized among other things by production of high levels of interleukin- (IL-) 4 and IL-13. Alternative activation of macrophages by IL-4 in vitro was described as an opposite phenotype of classically activated macrophages, but the in vivo reality is much more complex. Their exact activation state as well as the role of these cells and associated molecules in type 2 immune responses remains to be fully understood. We can take advantage of a variety of helminth models available, each of which have their own feature including life cycle, site of infection, or pathological mechanisms influencing macrophage biology. Here, we reviewed the recent advances from the laboratory mouse about macrophage origin, polarization, activation, and effector functions during parasitic helminth infection.


2015 ◽  
Vol 17 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Kazuyo Moro ◽  
Hiroki Kabata ◽  
Masanobu Tanabe ◽  
Satoshi Koga ◽  
Natsuki Takeno ◽  
...  

2004 ◽  
Vol 78 (21) ◽  
pp. 11641-11647 ◽  
Author(s):  
Hong He ◽  
Ronald J. Messer ◽  
Shimon Sakaguchi ◽  
Guojun Yang ◽  
Shelly J. Robertson ◽  
...  

ABSTRACT Chronic infection with Friend retrovirus is associated with suppressed antitumor immune responses. In the present study we investigated whether modulation of T-cell responses during acute infection would restore antitumor immunity in persistently infected mice. T-cell modulation was done by treatments with DTA-1 anti- glucocorticoid-induced tumor necrosis factor receptor monoclonal antibodies. The DTA-1 monoclonal antibody is nondepleting and delivers costimulatory signals that both enhance the activation of effector T cells and inhibit suppression by regulatory T cells. DTA-1 therapy produced faster Th1 immune responses, significant reductions in both acute virus loads and pathology and, most importantly, long-term improvement of CD8+ T-cell-mediated antitumor responses.


Sign in / Sign up

Export Citation Format

Share Document