scholarly journals Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question

2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Matteini ◽  
Medhanie A. Mulaw ◽  
M. Carolina Florian

The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a complex and dynamic network of interactions across multiple cell types regulates HSC function. During the last years, it became progressively clearer that changes in the HSC niche are responsible for specific alterations of HSC behavior. The aging of the bone marrow (BM) microenvironment has been shown to critically contribute to the decline in HSC function over time. Interestingly, while upon aging some niche structures within the BM are degenerated and negatively affect HSC functionality, other niche cells and specific signals are preserved and essential to retaining HSC function and regenerative capacity. These new findings on the role of the aging BM niche critically depend on the implementation of new technical tools, developed thanks to transdisciplinary approaches, which bring together different scientific fields. For example, the development of specific mouse models in addition to coculture systems, new 3D-imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the importance of new technologies to unravel the complexity of the BM niche on aging. Of note, an exponential impact in the understanding of this biological system has been recently brought by single-cell sequencing techniques, spatial transcriptomics, and implementation of artificial intelligence and deep learning approaches to data analysis and integration. This review focuses on how the aging of the BM niche affects HSCs and on the new tools to investigate the specific alterations occurring in the BM upon aging. All these new advances in the understanding of the BM niche and its regulatory function on HSCs have the potential to lead to novel therapeutical approaches to preserve HSC function upon aging and disease.

2012 ◽  
Vol 209 (3) ◽  
pp. 537-549 ◽  
Author(s):  
Anna Mansour ◽  
Grazia Abou-Ezzi ◽  
Ewa Sitnicka ◽  
Sten Eirik W. Jacobsen ◽  
Abdelilah Wakkach ◽  
...  

Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.


Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 6123-6132 ◽  
Author(s):  
Richard K. Burt ◽  
Robert M. Craig ◽  
Francesca Milanetti ◽  
Kathleen Quigley ◽  
Paula Gozdziak ◽  
...  

Abstract We evaluated the safety and clinical outcome of autologous nonmyeloablative hematopoietic stem cell transplantation (HSCT) in patients with severe Crohn disease (CD) defined as a Crohn Disease Activity Index (CDAI) greater than 250, and/or Crohn Severity Index greater than 16 despite anti–tumor necrosis factor therapy. Stem cells were mobilized from the peripheral blood using cyclophosphamide (2.0 g/m2) and G-CSF (10 μg/kg/day), enriched ex vivo by CD34+ selection, and reinfused after immune suppressive conditioning with cyclophosphamide (200 mg/kg) and either equine antithymocyte globulin (ATG, 90 mg/kg) or rabbit ATG (6 mg/kg). Eighteen of 24 patients are 5 or more years after transplantation. All patients went into remission with a CDAI less than 150. The percentage of clinical relapse-free survival defined as the percent free of restarting CD medical therapy after transplantation is 91% at 1 year, 63% at 2 years, 57% at 3 years, 39% at 4 years, and 19% at 5 years. The percentage of patients in remission (CDAI < 150), steroid-free, or medication-free at any posttransplantation evaluation interval more than 5 years after transplantation has remained at or greater than 70%, 80%, and 60%, respectively. This trial was registered at www.clinicaltrials.gov as NCT0027853.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3199-3199
Author(s):  
Ji Zha ◽  
Lori Kunselman ◽  
Hongbo Michael Xie ◽  
Brian Ennis ◽  
Jian-Meng Fan ◽  
...  

Hematopoietic stem cell (HSC) transplantation (HSCT) is required for curative therapy for patients with high-risk hematologic malignancies, and a number of non-malignant disorders including inherited bone marrow failure syndromes (iBMFS). Strategies to enhance bone marrow (BM) niche capacity to engraft donor HSC have the potential to improve HSCT outcome by decreasing graft failure rates and enabling reduction in conditioning intensity and regimen-associated complications. Several studies in animal models of iBMFS have demonstrated that BM niche dysfunction contributes to both the pathogenesis of iBMFS, as well as impaired graft function after HSCT. We hypothesize that such iBMFS mouse models are useful tools for discovering targetable niche elements critical for donor engraftment after HSCT. Here, we report the development of a novel mouse model of Shwachman-Diamond Syndrome (SDS) driven by conditional Sbds deletion, which demonstrates profound impairment of healthy donor hematopoietic engraftment after HSCT due to pathway-specific dysfunctional signaling within SBDS-deficient recipient niches. We first attempted to delete Sbds specifically in mature osteoblasts by crossing Sbdsfl/flmice with Col1a1Cre+mice. However, the Col1a1CreSbdsExc progenies are embryonic lethal at E12-E15 stage due to developmental musculoskeletal abnormalities. Alternatively, we generated an inducible SDS mouse model by crossing Sbdsfl/flmice with Mx1Cre+ mice, and inducing Sbds deletion in Mx1-inducible BM hematopoietic and osteolineage niche cells by polyinosinic-polycytidilic acid (pIpC) administration. Compared with Sbdsfl/flcontrols, Mx1CreSbdsExc mice develop significantly decreased platelet counts, an inverted peripheral blood myeloid/lymphoid cell ratio, and reduced long-term HSC within BM, consistent with stress hematopoiesis seen in BMF and myelodysplastic syndromes. To assess whether inducible SBDS deficiency impacts niche function to engraft donor HSC, we transplanted GFP+ wildtype donor BM into pIpC-treated Mx1CreSbdsExc mice and Sbdsfl/flcontrols after 1100 cGy of total body irradiation (TBI). Following transplantation, Mx1CreSbdsExc recipient mice exhibit significantly higher mortality than controls (Figure 1). The decreased survival was related to primary graft failure, as Mx1CreSbdsExc mice exhibit persistent BM aplasia after HSCT and decreased GFP+ reconstitution in competitive secondary transplantation assays. We next sought to identify the molecular and cellular defects within BM niche cells that contribute to the engraftment deficits in SBDS-deficient mice. We performed RNA-seq analysis on the BM stromal cells from irradiated Mx1CreSbdsExc mice versus controls, and the results revealed that SBDS deficiency in BM niche cells caused disrupted gene expression within osteoclast differentiation, FcγR-mediated phagocytosis, and VEGF signaling pathways. Multiplex ELISA assays showed that the BM niche of irradiated Mx1CreSbdsExc mice expresses lower levels of CXCL12, P-selectin and IGF-1, along with higher levels of G-CSF, CCL3, osteopontin and CCL9 than controls. Together, these results suggest that poor donor HSC engraftment in SBDS-deficient mice is likely caused by alterations in niche-mediated donor HSC homing/retention, bone metabolism, host monocyte survival, signaling within IGF-1 and VEGF pathways, and an increased inflammatory state within BM niches. Moreover, flow cytometry analysis showed that compared to controls, the BM niche of irradiated Mx1CreSbdsExc mice contained far fewer megakaryocytes, a hematopoietic cell component of BM niches that we previously demonstrated to be critical in promoting osteoblastic niche expansion and donor HSC engraftment. Taken together, our data demonstrated that SBDS deficiency in BM niches results in reduced capacity to engraft donor HSC. We have identified multiple molecular and cellular defects in the SBDS-deficient niche contributing to this phenotype. Such niche signaling pathway-specific deficits implicate these pathways as critical for donor engraftment during HSCT, and suggest their potential role as targets of therapeutic approaches to enhance donor engraftment and improve HSCT outcome in any condition for which HSCT is required for cure. Disclosures Olson: Merck: Membership on an entity's Board of Directors or advisory committees; Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4363-4363
Author(s):  
Alexandre Janel ◽  
Nathalie Boiret-Dupré ◽  
Juliette Berger ◽  
Céline Bourgne ◽  
Richard Lemal ◽  
...  

Abstract Hematopoietic stem cell (HSC) function is critical in maintaining hematopoiesis continuously throughout the lifespan of an organism and any change in their ability to self-renew and/or to differentiate into blood cell lineages induces severe diseases. Postnatally, HSC are mainly located in bone marrow where their stem cell fate is regulated through a complex network of local influences, thought to be concentrated in the bone marrow (BM) niche. Despite more than 30 years of research, the precise location of the HSC niche in human BM remains unclear because most observations were obtained from mice models. BM harvesting collects macroscopic coherent tissue aggregates in a cell suspension variably diluted with blood. The qualitative interest of these tissue aggregates, termed hematons, was already reported (first by I. Blaszek's group (Blaszek et al., 1988, 1990) and by our group (Boiret et al., 2003)) yet they remain largely unknown. Should hematons really be seen as elementary BM units, they must accommodate hematopoietic niches and must be a complete ex vivo surrogate of BM tissue. In this study, we analyzed hematons as single tissue structures. Biological samples were collected from i) healthy donor bone marrow (n= 8); ii) either biological samples collected for routine analysis by selecting bone marrow with normal analysis results (n=5); or iii) from spongy bone collected from the femoral head during hip arthroplasty (n=4). After isolation of hematons, we worked at single level, we used immunohistochemistry techniques, scanning electronic microscopy, confocal microscopy, flow cytometry and cell culture. Each hematon constitutes a miniature BM structure organized in lobular form around the vascular tree. Hematons are organized structures, supported by a network of cells with numerous cytoplasmic expansions associated with an amorphous structure corresponding to the extracellular matrix. Most of the adipocytes are located on the periphery, and hematopoietic cells can be observed as retained within the mesenchymal network. Although there is a degree of inter-donor variability in the cellular contents of hematons (on average 73 +/- 10 x103 cells per hematon), we observed precursors of all cell lines in each structure. We detected a higher frequency of CD34+ cells than in filtered bone marrow, representing on average 3% and 1% respectively (p<0.01). Also, each hematon contains CFU-GM, BFU-E, CFU-Mk and CFU-F cells. Mesenchymal cells are located mainly on the periphery and seem to participate in supporting the structure. The majority of mesenchymal cells isolated from hematons (21/24) sustain in vitro hematopoiesis. Interestingly, more than 90% of the hematons studied contained LTC-ICs. Furthermore, when studied using confocal microscopy, a co-localization of CD34+ cells with STRO1+ mesenchymal cells was frequently observed (75% under 10 µm of the nearest STRO-1+ cell, association statistically highly significant; p <1.10-16). These results indicate the presence of one or several stem cell niches housing highly primitive progenitor cells. We are confirming these in vitro data with an in vivo xenotransplantation model. These structures represent the elementary functional units of adult hematopoietic tissue and are a particularly attractive model for studying homeostasis of the BM niche and the pathological changes occurring during disease. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 55 (6) ◽  
pp. 1029-1040 ◽  
Author(s):  
Xiuxiu Yin ◽  
Linping Hu ◽  
Yawen Zhang ◽  
Caiying Zhu ◽  
Hui Cheng ◽  
...  

AbstractThe bone marrow (BM) niche regulates multiple hematopoietic stem cell (HSC) processes. Clinical treatment for hematological malignancies by HSC transplantation often requires preconditioning via total body irradiation, which severely and irreversibly impairs the BM niche and HSC regeneration. Novel strategies are needed to enhance HSC regeneration in irradiated BM. We compared the effects of EGF, FGF2, and PDGFB on HSC regeneration using human mesenchymal stem cells (MSCs) that were transduced with these factors via lentiviral vectors. Among the above niche factors tested, MSCs transduced with PDGFB (PDGFB-MSCs) most significantly improved human HSC engraftment in immunodeficient mice. PDGFB-MSC-treated BM enhanced transplanted human HSC self-renewal in secondary transplantations more efficiently than GFP-transduced MSCs (GFP-MSCs). Gene set enrichment analysis showed increased antiapoptotic signaling in PDGFB-MSCs compared with GFP-MSCs. PDGFB-MSCs exhibited enhanced survival and expansion after transplantation, resulting in an enlarged humanized niche cell pool that provide a better humanized microenvironment to facilitate superior engraftment and proliferation of human hematopoietic cells. Our studies demonstrate the efficacy of PDGFB-MSCs in supporting human HSC engraftment.


Sign in / Sign up

Export Citation Format

Share Document