scholarly journals Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors

2019 ◽  
Vol 6 ◽  
Author(s):  
Shukla Poddar ◽  
Neethu Chacko ◽  
Debadatta Swain
2017 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Kusuma Wardani Laksitaningrum ◽  
Wirastuti Widyatmanti

<p align="center"><strong>ABSTRAK</strong></p><p class="abstrak">Waduk Gajah Mungkur (WGM) adalah bendungan buatan yang memiliki luas genangan maksimum 8800 ha, terletak di Desa Pokoh Kidul, Kecamatan Wonogiri, Kabupaten Wonogiri. Kondisi perairan WGM dipengaruhi oleh faktor klimatologis, fisik, dan aktivitas manusia yang dapat menyumbang nutrisi sehingga mempengaruhi status trofiknya. Tujuan dari penelitian ini adalah mengkaji kemampuan citra Landsat 8 OLI untuk memperoleh parameter-parameter yang digunakan untuk menilai status trofik, menentukan dan memetakan status trofik yang diperoleh dari citra Landsat 8 OLI, dan mengevaluasi hasil pemetaan dan manfaat citra penginderaan jauh untuk identifikasi status trofik WGM. Identifikasi status trofik dilakukan berdasarkan metode <em>Trophic State Index</em> (TSI) Carlson (1997) menggunakan tiga parameter yaitu kejernihan air, total fosfor, dan klorofil-a. Model yang diperoleh berdasar pada rumus empiris dari hasil uji regresi antara pengukuran di lapangan dan nilai piksel di citra Landsat 8 OLI. Model dipilih berdasarkan nilai koefisien determinasi (R<sup>2</sup>) tertinggi. Hasil penelitian merepresentasikan bahwa nilai R<sup>2</sup> kejernihan air sebesar 0,813, total fosfor sebesar 0,268, dan klorofil-a sebesar 0,584. Apabila nilai R<sup>2 </sup>mendekati 1, maka semakin baik model regresi dapat menjelaskan suatu parameter status trofik. Berdasarkan hasil kalkulasi diperoleh distribusi yang terdiri dari kelas eutrofik ringan, eutrofik sedang, dan eutrofik berat yaitu pada rentang nilai indeks 50,051 – 80,180. Distribusi terbesar adalah eutrofik sedang. Hal tersebut menunjukkan tingkat kesuburan perairan yang tinggi dan dapat membahayakan makhluk hidup lain.</p><p><strong>Kata kunci: </strong>Waduk Gajah Mungkur, citra Landsat 8 OLI, regresi, TSI, status trofik</p><p class="judulABS"><strong>ABSTRACT</strong></p><p class="Abstrakeng">Gajah Mungkur Reservoir is an artificial dam that has a maximum inundated areas of 8800 ha, located in Pokoh Kidul Village, Wonogiri Regency. The reservoir’s water conditions are affected by climatological and physical factors, as well as human activities that can contribute to nutrients that affect its trophic state. This study aimed to assess the Landsat 8 OLI capabilities to obtain parameters that are used to determine its trophic state, identifying and mapping the trophic state based on parameters derived from Landsat 8 OLI, and evaluating the results of the mapping and the benefits of remote sensing imagery for identification of its trophic state. Identification of trophic state is based on Trophic State Index (TSI) Carlson (1997), which uses three parameters there are water clarity, total phosphorus, and chlorophyll-a. The model is based on an empirical formula of regression between measurements in the field and the pixel values in Landsat 8 OLI. Model is selected on the highest value towards coefficient of determination (R<sup>2</sup>). The results represented that R<sup>2</sup> of water clarity is 0.813, total phosphorus is 0.268, and chlorophyll-a is 0.584. If R<sup>2</sup> close to 1, regression model will describe the parameters of the trophic state better. Based on the calculation the distribution consists of mild eutrophic, moderate eutrophic, and heavy eutrophic that has index values from 50.051 to 80.18. The most distribution is moderate eutrophication, and it showed the high level of trophic state and may harm other living beings.</p><p><strong><em>Keywords: </em></strong><em>Gajah Mungkur Reservoir, </em><em>L</em><em>andsat 8 OLI satellite imagery, regression, TSI, trophic state</em></p>


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 846
Author(s):  
Mbulisi Sibanda ◽  
Onisimo Mutanga ◽  
Timothy Dube ◽  
John Odindi ◽  
Paramu L. Mafongoya

Considering the high maize yield loses caused by incidences of disease, as well as incomprehensive monitoring initiatives in crop farming, there is a need for spatially explicit, cost-effective, and consistent approaches for monitoring, as well as for forecasting, food-crop diseases, such as maize Gray Leaf Spot. Such approaches are valuable in reducing the associated economic losses while fostering food security. In this study, we sought to investigate the utility of the forthcoming HyspIRI sensor in detecting disease progression of Maize Gray Leaf Spot infestation in relation to the Sentinel-2 MSI and Landsat 8 OLI spectral configurations simulated using proximally sensed data. Healthy, intermediate, and severe categories of maize crop infections by the Gray Leaf Spot disease were discriminated based on partial least squares–discriminant analysis (PLS-DA) algorithm. Comparatively, the results show that the HyspIRI’s simulated spectral settings slightly performed better than those of Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor. HyspIRI exhibited an overall accuracy of 0.98 compared to 0.95, 0.93, and 0.89, which were exhibited by Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor sensors, respectively. Furthermore, the results showed that the visible section, red-edge, and NIR covered by all the four sensors were the most influential spectral regions for discriminating different Maize Gray Leaf Spot infections. These findings underscore the potential value of the upcoming hyperspectral HyspIRI sensor in precision agriculture and forecasting of crop-disease epidemics, which are necessary to ensure food security.


Author(s):  
M. Sibanda ◽  
O. Mutanga ◽  
T. Dube ◽  
J. Odindi ◽  
P. L. Mafongoya

Abstract. Considering the high maize yield loses that are caused by diseases incidences as well as incomprehensive monitoring initiatives in the crop farming sector of agriculture, there is a need to come up with spatially explicit, cheap, fast and consistent approaches for monitoring as well as forecasting food crop diseases, such as maize gray leaf spot. This study, therefore, we sought to investigate the usability, strength and practicality of the forthcoming HyspIRI in detecting disease progression of Maize Gray leafy spot infections in relation to the Sentinel-2 MSI, Landsat 8 OLI spectral configurations. Maize Gray leafy spot disease progression that were discriminated based on partial least squares –discriminant analysis (PLS-DA) algorithm were (i) healthy, (ii) intermediate and (ii) severely infected maize crops. Comparatively, the results show that the HyspIRI’s simulated spectral settings slightly performed better than those of Sentinel-2 MSI, VENμS and Landsat 8 OLI sensor. HyspIRI exhibited an overall accuracy of 0.98 compared to 0.95, 0.93 and 0.89 exhibited by Sentinel-2 MSI, VENμS and Landsat 8 OLI sensor sensors, respectively. Further, the results showed that the visible section the red-edge and NIR covered by all the four sensors were the most influential spectral regions for discriminating different Maize Gray leafy spot infections. These findings underscore the added value and potential scientific breakthroughs likely to be brought about by the upcoming hyperspectral HyspIRI sensor in precision agriculture and forecasting of crop disease epidemics to ensure food security.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232962 ◽  
Author(s):  
Fiona Ngadze ◽  
Kudzai Shaun Mpakairi ◽  
Blessing Kavhu ◽  
Henry Ndaimani ◽  
Monalisa Shingirayi Maremba

2019 ◽  
Vol 8 (2) ◽  
pp. 56 ◽  
Author(s):  
Maliheh Arekhi ◽  
Cigdem Goksel ◽  
Fusun Balik Sanli ◽  
Gizem Senel

This study aims to test the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for the potential of monitoring longos forests for four seasons in Igneada, Turkey. Vegetation indices, including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI), were generated for the study area in addition to the five corresponding bands of Sentinel-2 and Landsat-8 OLI Images. Although the spectral consistency of the data was interpreted by cross-calibration analysis using the Pearson correlation coefficient, spatial consistency was evaluated by descriptive statistical analysis of investigated variables. In general, the highest correlation values were achieved for the images that were acquired in the spring season for almost all investigated variables. In the spring season, among the investigated variables, the Red band (B4), NDVI and EVI have the largest correlation coefficients of 0.94, 0.92 and 0.91, respectively. Regarding the spatial consistency, the mean and standard deviation values of all variables were consistent for all seasons except for the mean value of the NDVI for the fall season. As a result, if there is no atmospheric effect or data retrieval/acquisition error, either Landsat-8 or Sentinel-2 can be used as a combination or to provide the continuity data in longos monitoring applications. This study contributes to longos forest monitoring science in terms of remote sensing data analysis.


2020 ◽  
Vol 12 (12) ◽  
pp. 2065 ◽  
Author(s):  
Feng Xu ◽  
Zhaofu Li ◽  
Shuyu Zhang ◽  
Naitao Huang ◽  
Zongyao Quan ◽  
...  

Winter wheat is one of the major cereal crops in China. The spatial distribution of winter wheat planting areas is closely related to food security; however, mapping winter wheat with time-series finer spatial resolution satellite images across large areas is challenging. This paper explores the potential of combining temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data available via the Google Earth Engine (GEE) platform for mapping winter wheat in Shandong Province, China. First, six phenological median composites of Landsat-8 OLI and Sentinel-2 MSI reflectance measures were generated by a temporal aggregation technique according to the winter wheat phenological calendar, which covered seedling, tillering, over-wintering, reviving, jointing-heading and maturing phases, respectively. Then, Random Forest (RF) classifier was used to classify multi-temporal composites but also mono-temporal winter wheat development phases and mono-sensor data. The results showed that winter wheat could be classified with an overall accuracy of 93.4% and F1 measure (the harmonic mean of producer’s and user’s accuracy) of 0.97 with temporally aggregated Landsat-8 and Sentinel-2 data were combined. As our results also revealed, it was always good to classify multi-temporal images compared to mono-temporal imagery (the overall accuracy dropped from 93.4% to as low as 76.4%). It was also good to classify Landsat-8 OLI and Sentinel-2 MSI imagery combined instead of classifying them individually. The analysis showed among the mono-temporal winter wheat development phases that the maturing phase’s and reviving phase’s data were more important than the data for other mono-temporal winter wheat development phases. In sum, this study confirmed the importance of using temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data combined and identified key winter wheat development phases for accurate winter wheat classification. These results can be useful to benefit on freely available optical satellite data (Landsat-8 OLI and Sentinel-2 MSI) and prioritize key winter wheat development phases for accurate mapping winter wheat planting areas across China and elsewhere.


2020 ◽  
Vol 177 ◽  
pp. 330-337
Author(s):  
Gizem Senel ◽  
Ahmet Ozgur Dogru ◽  
Cigdem Goksel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document