scholarly journals Far-Field Impacts of a Super Typhoon on Upper Ocean Phytoplankton Dynamics

2021 ◽  
Vol 8 ◽  
Author(s):  
Guoqiang Qiu ◽  
Xiaogang Xing ◽  
Fei Chai ◽  
Xiao-Hai Yan ◽  
Zhiyu Liu ◽  
...  

Super typhoon Rammasun (2014) traveled across the South China Sea on July 16–18. Its far-field impacts on phytoplankton dynamics in the upper ocean were documented by a Biogeochemical-Argo (BGC-Argo) float located 200 km to the left of its track. Both surface chlorophyll-a concentration (Chla) and particulate backscattering coefficient (bbp) were observed to increase substantially within two distinct stages. The initial increase occurred during the passage of the typhoon, and the subsequent increase happened 5 days after the typhoon. In contrast, depth-integrated Chla and bbp in the upper 150 m underwent negligible changes throughout the entire period. The key lies in the fact that surface phytoplankton increases in the far-field region resulted from the physically driven vertical redistribution of particles, rather than from biological alternations. The first increase was attributed to the typhoon-induced strong turbulence which deepened the surface mixed layer, and thus entrained subsurface particles to the surface; the second was due to the post-typhoon adiabatic quasi-geostrophic adjustment of the upper ocean that gradually raised the isopycnals (and thus subsurface particles). These results challenge the prevailing wisdom on typhoon impacts, and thus shed new lights on the nature of the upper ocean responses to typhoons from both physical and biological perspectives.

Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. Varghese ◽  
O. Shramkova ◽  
P. Minard ◽  
L. Blondé ◽  
V. Drazic ◽  
...  

AbstractIn this paper, we report the experimental and numerical investigation of plane wave diffraction by an all-dielectric dual-material cuboid. Edge diffraction by a cuboid leads to the generation of a narrow, high intensity beam in the near-field region called a photonic jet. We examine the dependence of the jet behavior and orientation on the materials and dimensions of constitutive parts in the microwave frequency domain. The possibility to shift and deviate the resultant microwave jet in the near-field region of such a structure depending on the size of constitutive parts is demonstrated numerically. Experimentally, we observe a shift in the spatial position of the jet. The experimental asymmetric electric field profile observed in the far-field region is attributed to the input of multiple edge waves generated by the dual-material cuboid. The presented results may be scaled at different frequency bands such as optical frequencies for designing nanostructures enabling the focusing and deviation functionality and creation of new optical devices which would satisfy the needs of emerging nanophotonic applications.


Author(s):  
Lianxin Zhang ◽  
Xuefeng Zhang ◽  
William Perrie ◽  
Changlong Guan ◽  
Bo Dan ◽  
...  

AbstractA coupled ocean-wave-sea spray model system is used to investigate the impacts of sea spray and sea surface roughness on the response of the upper ocean to the passage of the super typhoon Haitang. Sea spray mediated heat and momentum fluxes are derived from an improved version of Fairall’s heat fluxes formulation (Zhang et al., 2017) and Andreas’s sea spray-mediated momentum flux models. For winds ranging from low to extremely high speeds, a new parameterization scheme for the sea surface roughness is developed, in which the effects of wave state and sea spray are introduced. In this formulation, the drag coefficient has minimal values over the right quadrant of the typhoon track, along which the typhoon-generated waves are longer, smoother, and older, compared to other quadrants. Using traditional interfacial air-sea turbulent (sensible, latent, and momentum) fluxes, the sea surface cooling response to typhoon Haitang is overestimated by 1 °C, which can be compensated by the effects of sea spray and ocean waves on the right side of the storm. Inclusion of sea spray-mediated turbulent fluxes and sea surface roughness, modulated by ocean waves, gives enhanced cooling along the left edges of the cooling area by 0.2 °C, consistent with the upper ocean temperature observations.


2016 ◽  
Vol 46 (1) ◽  
pp. 275-287 ◽  
Author(s):  
Cédric P. Chavanne ◽  
Patrice Klein

AbstractA quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
A.-M. Shinneeb ◽  
R. Balachandar ◽  
J. D. Bugg

This paper investigates an isothermal free water jet discharging horizontally from a circular nozzle (9mm) into a stationary body of water. The jet exit velocity was 2.5m∕s and the exit Reynolds number was 22,500. The large-scale structures in the far field were investigated by performing a proper orthogonal decomposition (POD) analysis of the velocity field obtained using a particle image velocimetry system. The number of modes used for the POD reconstruction of the velocity fields was selected to recover 40% of the turbulent kinetic energy. A vortex identification algorithm was then employed to quantify the size, circulation, and direction of rotation of the exposed vortices. A statistical analysis of the distribution of number, size, and strength of the identified vortices was carried out to explore the characteristics of the coherent structures. The results clearly reveal that a substantial number of vortical structures of both rotational directions exist in the far-field region of the jet. The number of vortices decreases in the axial direction, while their size increases. The mean circulation magnitude is preserved in the axial direction. The results also indicate that the circulation magnitude is directly proportional to the square of the vortex radius and the constant of proportionality is a function of the axial location.


Sign in / Sign up

Export Citation Format

Share Document