scholarly journals Nutrient Pollution and Its Dynamic Source-Sink Pattern in the Pearl River Estuary (South China)

2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Tao ◽  
Lixia Niu ◽  
Yanhong Dong ◽  
Tao Fu ◽  
Quansheng Lou

Nutrient enrichment and its quantitative cause-effect chains of the biogeochemical processes have scarcely been documented in the Pearl River Estuary (South China). Field investigations of nutrient samples taken between 1996 and 2018 showed significant differences in nitrogen and phosphorus with times and sites. The concentrations of DIN and DIP gradually increased over the past two decades, with good fitted linear curves (R2 = 0.31 for DIN, R2 = 0.92 for DIP); while the temporal variation in DSi was non-significant. Higher levels of nitrogen and silicate mainly appeared in the upper estuary because of the riverine influence. The phosphorus pollution was accumulated in the northeast (e.g., Shenzhen bay). The aquatic environment was highly sensitive to nutrient pollution and eutrophication risk, which accordingly corresponded to high phytoplankton production and biodiversity. Phosphorus was the limiting factor of phytoplankton growth in this estuary, and more frequently caused the eutrophication risks and blooms. The nutrient pollution was largely influenced by riverine inputs, quantified by PCA-generation, and the contributions of coastal emission and atmospheric deposition were followed. The two-end member mixing model differentiated the physical alterations from the biological activity and identified the dynamic source-sink patterns of nutrient species. Nitrogen and silicate had relatively conservative behaviors in the estuary and phosphate showed an active pattern.

Harmful Algae ◽  
2012 ◽  
Vol 13 ◽  
pp. 10-19 ◽  
Author(s):  
Ping-Ping Shen ◽  
Ya-Nan Li ◽  
Yu-Zao Qi ◽  
Lv-Ping Zhang ◽  
Ye-Hui Tan ◽  
...  

2004 ◽  
Vol 132 (1) ◽  
pp. 157-172 ◽  
Author(s):  
C.C.M. Ip ◽  
X.D. Li ◽  
G. Zhang ◽  
J.G. Farmer ◽  
O.W.H. Wai ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 51-64
Author(s):  
Hing Yim Mok ◽  
Wing Hong Lui ◽  
Dick Shum Lau ◽  
Wang Chun Woo

Abstract. A typhoon struck the Pearl River Estuary in September 1874 (“Typhoon 1874”), causing extensive damage and claiming thousands of lives in the region during its passage. Like many other historical typhoons, the deadliest impact of the typhoon was its associated storm surge. In this paper, a possible track of the typhoon was reconstructed through an analysis of the historical qualitative and quantitative weather observations in the Philippines, the northern part of the South China Sea, Hong Kong, Macao, and Guangdong recorded in various historical documents. The magnitudes of the associated storm surges and storm tides in Hong Kong and Macao were also quantitatively estimated using storm surge model and analogue astronomical tides based on the reconstructed track. The results indicated that the typhoon could have crossed the Luzon Strait from the western North Pacific and moved across the northeastern part of the South China Sea to strike the Pearl River Estuary more or less as a super typhoon in the early morning on 23 September 1874. The typhoon passed about 60 km south–southwest of Hong Kong and made landfall in Macao, bringing maximum storm tides of around 4.9 m above the Hong Kong Chart Datum (http://www.geodetic.gov.hk/smo/gsi/Data/pdf/explanatorynotes.pdf, last access: 3 January 2020) at the Victoria Harbour in Hong Kong and around 5.4 m above the Macao Chart Datum (https://mosref.dscc.gov.mo/Help/ref/Macaucoord_2009_web_EN_v201702.pdf, last access: 3 January 2020) at Porto Interior (inner harbour) in Macao. Both the maximum storm tide (4.88 m above the Hong Kong Chart Datum) and maximum storm surge (2.83 m) brought by Typhoon 1874 at the Victoria Harbour estimated in this study are higher than all the existing records since the establishment of the Hong Kong Observatory in 1883, including the recent records set by super typhoon Mangkhut on 16 September 2018.


2014 ◽  
Vol 30 (6) ◽  
pp. 1797-1808 ◽  
Author(s):  
Yujuan Yue ◽  
Jianhua Gong ◽  
Duochun Wang ◽  
Biao Kan ◽  
Baisheng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document